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Summary. Prediction of cooling by forced convection due
to corona-induced ion flow in an electro-hydrodynamic (or
EHD) simulation requires a reliable corona electrode model,
which has to be formulated as a boundary condition (BC)
to the EHD partial differential equations. We discuss and
compare four different BCs in the context of finite-volume
methods (FVM). It turns out that the optimum choice de-
pends on the given physical information.

1 EHD differential and numerical model

Corona discharge refers to field induced gas ioniza-
tion near an electrode, e.g., a thin wire (emitter), in
series with the dark discharge associated with the ion
drift towards counter electrodes (collector). The ion
motion induces a drag of the neutral gas, and can be
used to convection cool a heat source, which may be
the collector at the same time. The associated equa-
tions consist of the Poisson equation for the electric
potential φ , and the balance equations for the densi-
ties for ion number Np, mass ρ , momentum ρv, and
energy (written in terms of the temperature T ). In the
Boussinesq approximation, they read

−∇ · (ε∇φ) = qNp (1)
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DT
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= k∆T + j ·E− fEHD ·v (5)

where ε is the electric permittivity, q the ion charge,
E = −∇φ the electric field, b the ion mobility, a
the diffusion constant, D•

Dt = ∂•
∂ t + v ·∇• the mate-

rial derivative for the velocity field v, ν the viscosity,
p the pressure, g the gravitational acceleration, fB =
β (Tref−T ) the buoyancy force, and fEHD = qNpE the
Coulomb force, assumed to be distributed over all gas
particles via scattering. The electric current density j
consists of drift, convection, and diffusion currents.

The system of coupled, nonlinear PDEs has to be
solved for given initial and boundary conditions. Prior
to discussing the latter, we summarize the global solu-
tion procedure. First, in a Gauss-Seidel-like approach,
the solution is determined progressively for the block

φ −Np, then for the block p− v and finally for T .
Because of the weak influence of each block to the
preceding ones, only one iteration per time step is
performed. Electrostatics equations are solved with
nonlinear formulation to reach convergence (for de-
tails, see [2]) while Navier-Stokes block is solved via
a SIMPLE-like projection method (λ (v) being a coef-
ficient depending on both the estimated velocity and
the grid). Here we sketch how this iteration is built:

n until
∫

Ω
(N(k−1)

p eφ (k,0)−φ (k,n) −N(k)
p )< tol.

l until ‖φ (k,n−1)−φ (k,n)‖∞ < tol.

s solve −∇ ·(ε∇φ (k,n))= qN(k−1)
p eφ (k,0)−φ (k,n)

,

linearized around φ (k,n−1)

l solve q ∂N(k)
p

∂ t =−∇ ·
(

j(φ (k,n),N(k)
p )
)

n solve momentum equation (4) for v(0)
n until

∫
Ω

∇ ·v( j) < tol.
l solve −∇ · (λ (v( j−1))∇p( j)) = ∇ ·v( j−1)

l correct v( j) = v( j−1)−λ (v( j−1))∇p( j)

n solve temperature equation (5)

2 Corona discharge boundary conditions

We restrict our discussion to the BC for Np at the
corona electrode, comparing four different BC types.
For the rest of the boundaries, instantaneous recom-
bination BC (n ·∇Np = 0) is applied at counter elec-
trodes, while in all other cases well-known standard
BCs can be used.

The first approach we present is the natural condi-
tion, namely imposing the normal flux jn associated to
(2) to be uniform; this approach is very accurate when
geometry is symmetric and one knows the actual cur-
rent from measurments, but has the drawback of be-
ing totally unpredictive. Nonetheless, this approach is
sometimes used with arbitrary geometries, defining an
active surface that emits the necessary current density.
The generally accepted Kaptsov’s hypothesis (see [5])
states that En := E ·n = Eon, namely the field remains
constant at the (virtual) electrode once the corona dis-
charge is triggered. A value for Eon can be computed
from Peek’s law (see e.g. [6], ch. 4) and allows to
define the active region as the part of the boundary
where En > Eon holds.

For having a predictive condition, instead, one
needs to somehow enforce a constitutive law linking
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Fig. 1. Gometries from [4] (left) and from [3] (right).

jn or Np with En. We choose to adopt the second, sim-
pler formulation, namely to impose Fi(En,Np) = 0 to
be satisfied on the boundary. Our first approach, given
in [1], is based on a simplified physical model of the
virtual contact which takes into account charge carri-
ers injected solely from the active surface (with a sat-
uration current density jsatH(En−Eon), where H(•)
is the Heaviside step function), and backscattered car-
riers (with current density given by−qNpw at the con-
tact, where w is a characteristic velocity). Neglecting
diffusion current at the electrode, this approach can be
interpreted as imposing the relation

F1(En,Np) = qNp(bEn−w)− jsatH(En−Eon) = 0 (6)

Choice for the parameters jsat and w needs to guaran-
tee that the injected charge can naturally force En =
Eon, otherwise current density saturates to jn = jsat
and space charge controlled current (SCCC) regime
is not reached anymore.

Our second approach is to model the boundary as
an ideal rectifying diode, in which no ion density is
flowing under the Eon treshold, while every Np value
is possible when En = Eon. Explicitly, this approach
is equivalent to enforce the following:

F2(En,Np) = Np

(
1− ( En

Eons
)β

)
= 0 (7)

β ∈ [0,1] being a smoothing factor. This relation
strongly enforces both Np to vanish in the other non
active portion of the electrode, and En to match Eon in
the active portion.

Our last approach assumes a constitutive relation
which is a more regular version for the former one:

F3(En,Np) = Np−Nref

(
exp
(

En
Eref

)
+1
)
= 0 (8)

where Nref and Eref are a device-off ion density and a
reference electric field. The choice of these two values
can thus be made independently from the particular
case (using e.g. air conductivity for Nref).

3 Results and conclusions

As examples, a wire-to-grid geometry [4] and a wire-
to-plate geometry [3] have been investigated (Fig. 1).

The former consists of a duct with a grounded
grid in the middle (both collectors), and an emitter
placed upstream. The Eon value is determined from
the experimental onset voltage (4 kV). Simulations
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Fig. 2. Comparison of the graphs on the Np−En plane de-
fined by the constitutive relations Fi(En,Np) = 0.
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Fig. 3. IV-characteristic for the wire to grid (left) and wire
to plate (right) geometries.

show how the natural condition matches exactly the
experimental value, and the iterative condition as in
(7) still captures well the electrical behavior. One may
thus consider that in cases like this, even when lack-
ing measured currents, the ideal diode model is still
appropriate.

The latter geometry has a heated plate with a col-
lecting stripe and the emitter is lifted from the plate.
As shown in Fig 3, this case is not as well reproduced
as the former, due to the highly nonuniform En on the
electrode. This issue may be solved with a parameter
optimization, which has not yet been undertaken in
the present study. The current, being the most influen-
tial parameter for for the fluid dynamics and thermal
computing, was predicted with acceptable accuracy.
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