SCEE2012
Scientific Computing in Electrical Engineering

September 11-14, 2012
hosted by ETH Zurich and ABB Corporate Research, Switzerland

Conference Program
and
Book of Abstracts

This conference program was sponsored by Robert Bosch GmbH
Cover image: electric field strength on the surface of electrodes, geometry data from ABB Switzerland, computations carried out by Lars Kielhorn, SAM, ETH Zürich, using the BETL boundary element library, see www.sam.math.ethz.ch/betl.
Table of Contents

- Instructions for speakers and for poster presenters .. 1
- General information .. 2
- Maps of locations .. 3-6
- Schedule of the week .. 7
- Sessions and Schedule Tuesday .. 8-9
- Sessions and Schedule Wednesday ... 10-11
- Sessions and Schedule Thursday .. 12-13
- Sessions and Schedule Friday .. 14-15
- List of Contributors (chronologically) ... 17-18
- Abstracts of Talks (chronologically) ... 23 - 114
- Abstracts of Posters (alphabetically) ... 117 - 212
- List of Participants .. 213 - 215
- Local Organizers and Programme Committee .. 217 - 218
- Notes
Instructions for Speakers (SCEE 2012)

• If possible speakers should bring their presentations in electronic form (PDF or PowerPoint) on an USB memory stick and give it to SCEE 2012 staff no later than 15 Minutes before the start of the session. File names should start with the speaker’s last name.

• In exceptional cases speakers may use their own laptops. It is their responsibility to make sure that the projection works. To that end they are strongly encouraged to test the setup during the break before their session.

• SCEE addresses a broad audience with diverse backgrounds and speakers should take this into account as well as the focus of the conference on computational aspects.

Instructions for Poster Presenters:

<table>
<thead>
<tr>
<th>Day & Time</th>
<th>Session type</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuesday, 14:50 - 16:20</td>
<td>regular session</td>
<td>ETH, Zurich</td>
</tr>
<tr>
<td>Wednesday, 14:50 - 16:20</td>
<td>regular session</td>
<td>ETH, Zurich</td>
</tr>
<tr>
<td>Wednesday, 14:50 - 16:20</td>
<td>Young Scientist Award session</td>
<td>ETH, Zurich</td>
</tr>
<tr>
<td>Thursday, 12:30 - 13:30</td>
<td>Industry Poster session</td>
<td>ABB, Baden</td>
</tr>
</tbody>
</table>

Location ETH Zurich: Main Building, E-Floor

Format: Maximum size is A0

When: Please look at “List of Contributors” in "Conference Program and Book of Abstracts", where you can find your personal session day.

Procedure

• All posters can be attached to vacant poster walls already on Tuesday morning in the ETH Main Hall.

• For all who participate in the Young Scientist Award, please use poster walls that are especially marked for that (label with "Young Scientist Award")

• The posters should be removed on Friday at 12:00 at the latest

• During your poster session you are expected to stand next to your poster during the entire session ready to answer questions. ¹

Industry Poster Session

For all those who present their poster on Thursday, please do not forget to bring it to ABB in Baden.

¹Short leaves are permitted.
General information

- **WLAN**
 You will have WLAN access at the ETH conference venue. Detailed information will be handed out at the registration desk.
 WLAN access on Thursday at ABB Baden: Access information is available in the Bardeen seminar room.

- **Lunch at the ETH-Mensa**
 For the Mensa, please take the lift to the level B and follow the signs.

- **Conference Dinner**
 Conference badges are considered as ‘Conference Dinner’ vouchers (Thursday).

- **Industry day participants**
 Badges and conference dinner vouchers for visitors of only the industry day can be picked up at the ABB registration desk on Thursday (Mrs. Weber).

- **Lunch and Industry Poster session at ABB**
 At ABB Baden-Dättwil we will first have Lunch in the “Gartenhaus” from 12:00 - 12:30. Afterwards coffee will be served together with the poster session in the “Foyer” from 12:30 - 13:30.
From Zurich main station to ETH Main Building

Location of bus stop on Thursday, 13 September
Departure 8:00

For underground bus stop on Thu, 8.00 please enter the underpass, then follow street for approx. 30 meters.
1 Euler Auditorium (Plenary Sessions)
2 Bardeen Seminar (WLAN)
3 Gartenhaus (Lunch)
4 Foyer (Coffee + Posters)

Address

ABB Schweiz AG, Corporate Research
Segelhofstrasse 1k
CH-5405 Baden-Dättwil

Schloss Wildegg
Effingerweg 5
CH-5103 Schloss Wildegg
Schedule
11 - 14 September 2012

<table>
<thead>
<tr>
<th>Time</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:00 - 08:45</td>
<td>Registration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08:45 - 09:00</td>
<td>Opening</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:00 - 09:40</td>
<td>Andreas Klöckner</td>
<td>Alper Demir</td>
<td>Welcome</td>
<td>Sascha Schneppe</td>
</tr>
<tr>
<td>09:40 - 10:00</td>
<td>Stefan Kurz</td>
<td>Kai Bittner</td>
<td>Didier Cottet</td>
<td>Nicolay Komarevskiy</td>
</tr>
<tr>
<td>10:00 - 10:20</td>
<td>Timo Hülsmann</td>
<td>Timo Rahkonen</td>
<td>Thorsten Steinmetz</td>
<td>Mark Blome</td>
</tr>
<tr>
<td>10:50 - 11:10</td>
<td>Irene Hiltunen</td>
<td>Oratio Muscato</td>
<td>10:40 - 12:00</td>
<td>Aram Markosyan</td>
</tr>
<tr>
<td>11:10 - 11:30</td>
<td>Matteo Porro</td>
<td>Vito Dario Camiola</td>
<td>Utz Wever</td>
<td>Davide Cagnoni</td>
</tr>
<tr>
<td>11:30 - 11:50</td>
<td>Bastian Bandlow</td>
<td>Evelyne Knapp</td>
<td>Sebastian Schöps</td>
<td>Christof Kaufmann</td>
</tr>
<tr>
<td>11:50 - 12:10</td>
<td>Aytac Alparslan</td>
<td>Carlo de Falco</td>
<td>Maximilian Wiesmüller</td>
<td></td>
</tr>
<tr>
<td>12:10 - 13:30</td>
<td>Lunch break</td>
<td>Lunch break</td>
<td>Lunch 12:00 - 12:30 Industry Poster Session 12:30 - 13:30</td>
<td>Giuseppe Nicosia</td>
</tr>
<tr>
<td>13:30 - 14:10</td>
<td>Olivier Le Maitre</td>
<td>Karl Meerbergen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:10 - 14:30</td>
<td>E. Jan W. ter Maten</td>
<td>Judith Schneider</td>
<td>13:30 - 14:30</td>
<td></td>
</tr>
<tr>
<td>14:30 - 14:50</td>
<td>Michaela Mehlín</td>
<td>Lihong Feng</td>
<td>Lab Visit</td>
<td></td>
</tr>
<tr>
<td>14:50 - 16:20</td>
<td>Coffee break + Poster Session</td>
<td>Coffee break + Poster Sessions (regular + Award)</td>
<td>14:30 - 15:50</td>
<td></td>
</tr>
<tr>
<td>16:20 - 16:40</td>
<td>Jian Cui</td>
<td>Ulrich Matthes</td>
<td>Lin Zschiedrich</td>
<td></td>
</tr>
<tr>
<td>16:40 - 17:00</td>
<td>Kersten Schmidt</td>
<td>Nicodemus Banagaaya</td>
<td>Lucas Kostetzer</td>
<td></td>
</tr>
<tr>
<td>17:00 - 17:20</td>
<td>Alberto Paganini</td>
<td>André Bodendiek</td>
<td>Mustafa Boyvat</td>
<td></td>
</tr>
<tr>
<td>17:20 - 17:40</td>
<td>Nils Lavesson</td>
<td>Martin Hess</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19:00</td>
<td>Workshop Apéro</td>
<td></td>
<td>16:00 Excursion + Conference Dinner</td>
<td></td>
</tr>
<tr>
<td>19:00</td>
<td>Bus to Baden/Dättwil: ETH Polyterrasse, see also map at page 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08:45 - 09:00</td>
<td>Registration: ETH Main Building, F floor, "Uhrenhalle"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:00 - 09:40</td>
<td>Workshop Apéro: Dozentenfoyer, Main Building, J floor (lift east)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:40 - 10:00</td>
<td>Oral Presentations: Main Building, F floor, F5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00 - 10:20</td>
<td>Poster Presentations: Main Building, E floor, Main Hall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:20 - 10:50</td>
<td>Coffee breaks: Main Building, E floor, Main Hall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:00 - 12:30</td>
<td>Lunch: ETH Mensa, Main Building, B-Floor</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sessions for Tuesday:

CE: Computational Electromagnetics

Chairman: Pascal Leuchtmann
Ursula van Rienen

MM: Mathematical and Computational Methods

Chairman: Ralf Hiptmair
Michael Günther

Poster Session:

Chairman: Wil Schilders

Contributors of Poster Session (see P.115/116):

Daniele Altomonte
Oana Antonescu
Matthias Bollhöfer
Angelo Brambilla
Beatrice Bugert
Ignasi Colominas
Luca Di Rienzo
Thomas Flisgen
Antti Hannukainen
Magnus Herberthson
Michael Kolmbauer

Fritz Kretzschmar
Bastiaan Michielsen
Andrey Pethukov
Adina Racasan
Andreas Rathsfeld
Santi Rizzo
Nunzio Salerno
Eike Scholz
Murat Simsek
Andreas Stock
<table>
<thead>
<tr>
<th>Time</th>
<th>Author</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00 - 09:40</td>
<td>A. Klöckner</td>
<td>Transformational programming for time- and frequency-domain EM simulation</td>
<td>23</td>
</tr>
<tr>
<td>09:40 - 10:00</td>
<td>St. Kurz</td>
<td>Improved electromagnetic modelling and simulation of axial flux machines</td>
<td>25</td>
</tr>
<tr>
<td>10:00 - 10:20</td>
<td>T. Hülsmann</td>
<td>Computation of optimal model parameters of an extended Brauer model for ferromagnetic material behaviour</td>
<td>27</td>
</tr>
<tr>
<td>10:20 - 10:50</td>
<td>I. Hiltunen</td>
<td>Broad band surface impedance boundary conditions for higher order time domain discontinuous Galerkin method</td>
<td>29</td>
</tr>
<tr>
<td>10:50 - 11:30</td>
<td>M. Porro</td>
<td>Bulk and interface balance equations for organic solar cell</td>
<td>31</td>
</tr>
<tr>
<td>11:30 - 11:50</td>
<td>N. Bandlow</td>
<td>Electromagnetic eigenmode characterization by sensitivity analysis simulation</td>
<td>33</td>
</tr>
<tr>
<td>11:50 - 12:10</td>
<td>A. Alparslan</td>
<td>Analysis of photonic structures in layered geometries by MMP</td>
<td>35</td>
</tr>
<tr>
<td>13:30 - 14:10</td>
<td>O. LeMaître</td>
<td>Stochastic spectral methods for uncertainty propagation in numerical models</td>
<td>37</td>
</tr>
<tr>
<td>14:10 - 14:30</td>
<td>E. ter Maten</td>
<td>Robust time-domain source stepping for DC-solution of circuit equations</td>
<td>39</td>
</tr>
<tr>
<td>14:30 - 14:50</td>
<td>M. Mehlin</td>
<td>High-order local time-stepping with explicit Runge-Kutta methods</td>
<td>41</td>
</tr>
<tr>
<td>16:20 - 16:40</td>
<td>J. Cui</td>
<td>Body-fitting meshes for the discontinuous Galerkin methods</td>
<td>43</td>
</tr>
<tr>
<td>16:40 - 17:00</td>
<td>K. Schmidt</td>
<td>Robust transmission conditions of high order for thin conducting sheets</td>
<td>45</td>
</tr>
<tr>
<td>17:00 - 17:20</td>
<td>A. Paganini</td>
<td>Efficient convolution based impedance boundary conditions</td>
<td>47</td>
</tr>
<tr>
<td>17:20 - 17:40</td>
<td>N. Lavesson</td>
<td>Modeling of streamers in transformer oil using OpenFOAM</td>
<td>49</td>
</tr>
</tbody>
</table>

Workshop Apéro in the Dozentenfoyer
Sessions for Wednesday:

CS: Circuit and Device Modelling & Simulation

Chairman: Georg Denk
Vittorio Romano

MOR: Model Order Reduction

Chairman: Gabriela Ciuprina
Jan ter Maten

Poster Session:

CS/MOR + Young Scientist Award

Chairman: Georg Denk

Contributors of Poster Session (see P.115/116):

Regular Poster Session
Gabriela Ciuprina
Selçuk Emiroglu
Claudia Hebedean
Van Hai Jorks
Umesh Kumar
Giovanni Mascali
Claudia Pacurar
Ihsan Pehlivan
Timo Rakhonen
Yılmaz Uyaroglu

Young Scientist Award
Daniele Altomonte
Oana Antonescu
Nicodemus Banagaaya
Beatrice Bugert
Davide Cagnoni
Vito Dario Camiola
Jian Cui
Selçuk Emiroglu
Thomas Flisgen
Claudia Hebedean
Irene Hiltunen
Timo Hülsmann
Van Hai Jorks
Evelyne Knapp
Michael Kolmbauer
Nikolay Komarevskiy
Fritz Kretzschmar
Umesh Kumar
Aram Markosyan
Andrey Petukhov
Matteo Porro
Judith Schneider
Elke Scholz
Murat Simsek
Andreas Stock
Maximilian Wiesmüller
<table>
<thead>
<tr>
<th>Time</th>
<th>Speaker</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00 - 09:40</td>
<td>A. Demir</td>
<td>Phase models and phase computations for oscillators</td>
</tr>
<tr>
<td>09:40 - 10:00</td>
<td>K. Bittner</td>
<td>Optimal frequency sweep method in multi-rate circuit simulation</td>
</tr>
<tr>
<td>10:00 - 10:20</td>
<td>T. Rahkonen</td>
<td>Polynomial fitting of nonlinear sources with correlating inputs</td>
</tr>
<tr>
<td>10:20 - 10:50</td>
<td>O. Muscato</td>
<td>Heat generation in silicon nanometric semiconductor devices</td>
</tr>
<tr>
<td>11:10 - 11:30</td>
<td>V.D. Camiola</td>
<td>Simulation of a double-gate MOSFET by a non parabolic energy-transport subband model based on MEP including crystal heating</td>
</tr>
<tr>
<td>11:30 - 11:50</td>
<td>E. Knapp</td>
<td>Electrical modelling of large-area organic light-emitting devices</td>
</tr>
<tr>
<td>11:50 - 12:10</td>
<td>C. de Falco</td>
<td>Numerical estimation of the impact of Energetic disorder on the low-frequency CV characteristics of organic MOS structures</td>
</tr>
</tbody>
</table>

12:10 - 13:30
Lunch

<table>
<thead>
<tr>
<th>Time</th>
<th>Speaker</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>13:30 - 14:10</td>
<td>K. Meerbergen</td>
<td>Model order reduction for PDE constrained optimization in vibrations</td>
</tr>
<tr>
<td>14:10 - 14:30</td>
<td>J. Schneider</td>
<td>Stochastic collocation methods and model reduction for Maxwell’s equations</td>
</tr>
<tr>
<td>14:30 - 14:50</td>
<td>L. Feng</td>
<td>Automatic model order reduction by moment-matching according to an efficient output error bound</td>
</tr>
</tbody>
</table>

14:50 - 16:20
Coffee break (sponsored by CADFEM) + Poster Session + Young Scientist Award

<table>
<thead>
<tr>
<th>Time</th>
<th>Speaker</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>16:20 - 16:40</td>
<td>U. Matthes</td>
<td>Reduced order modeling of ODE-PDE networks</td>
</tr>
<tr>
<td>16:40 - 17:00</td>
<td>N. Banagaaya</td>
<td>Index-aware model Order Reduction: LTI DAEs in electric networks</td>
</tr>
<tr>
<td>17:00 - 17:20</td>
<td>A. Bodendiek</td>
<td>Adaptive-order rational Arnoldi method for Maxwell’s equations</td>
</tr>
<tr>
<td>17:20 - 17:40</td>
<td>M. Hess</td>
<td>Reduced basis modeling for time-harmonic Maxwell’s equations</td>
</tr>
</tbody>
</table>
Sessions for Thursday:

I1: Industry Session 1
Chairman: Jörg Ostrowski

I2: Industry Session 2
Chairman: Andreas Blaszczyk

I3: Industry Session 4
Chairman: Bastiaan Michielsen

Industry Poster Session (12:30 - 13:30)
Chairman: Andreas Blaszczyk

Contributors of Poster Session (see P.115/116)
Giuseppe Ali
Andreas Blaszczyk
Marcos Bockholt
Thomas Christen
Yaser A Khalifa
Industry Day

Thursday, September 13

Location: ABB Baden-Dättwil

Invited talks

<table>
<thead>
<tr>
<th>Time</th>
<th>Chair</th>
<th>Speaker</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:00</td>
<td>Departure:</td>
<td></td>
<td>Bus transfer to Dättwil (start ETH Polyterrasse)</td>
</tr>
<tr>
<td>09:00 - 09:20</td>
<td>Welcome by</td>
<td>D. Cottet</td>
<td>Electromagnetic simulations in power electronic converter design</td>
</tr>
<tr>
<td>09:20 - 09:50</td>
<td>Research Director</td>
<td>T. Steinmetz</td>
<td>Numerical simulations for power and distribution transformers</td>
</tr>
</tbody>
</table>

Contributed talks

<table>
<thead>
<tr>
<th>Time</th>
<th>Speaker</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:40 - 10:20</td>
<td>U. Wever</td>
<td>Uncertainty quantification from an industrial perspective</td>
</tr>
<tr>
<td>10:20 - 11:00</td>
<td>S. Schöps</td>
<td>Uncertainty quantification of inrush currents in electric machines</td>
</tr>
<tr>
<td>11:20 - 11:40</td>
<td>M. Wiesmüller</td>
<td>Dielectric breakdown simulations of an on-load tap-changer in a</td>
</tr>
<tr>
<td>11:40 - 12:00</td>
<td></td>
<td>transformer considering the Influence of tap leads and windings</td>
</tr>
<tr>
<td>12:00 - 12:30</td>
<td>Lunch</td>
<td></td>
</tr>
<tr>
<td>12:30 - 13:30</td>
<td>Industry Poster Session</td>
<td></td>
</tr>
</tbody>
</table>

Lab Visit

<table>
<thead>
<tr>
<th>Time</th>
<th>Speaker</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>13:30 - 14:30</td>
<td>L. Zschiedrich</td>
<td>Nonlocal hydrodynamic Drude model of nano-plasmonic optical devices</td>
</tr>
<tr>
<td>15:10 - 15:30</td>
<td>L. Kostetzer</td>
<td>Model order reduction for efficient battery electro-thermal simulation</td>
</tr>
<tr>
<td>15:30 - 15:50</td>
<td>M. Boyvat</td>
<td>Metamaterial design for magnetic field shielding</td>
</tr>
</tbody>
</table>

Excursion + Conference Dinner

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>16:00</td>
<td>Excursion +</td>
<td>Conference Dinner + "Young Scientist Award"</td>
</tr>
<tr>
<td>16:00 - 16:15</td>
<td>Meeting time at</td>
<td>bus stop</td>
</tr>
<tr>
<td>16:30</td>
<td>Departure:</td>
<td>bus transfer from Dättwil to Schloss Wildegg</td>
</tr>
<tr>
<td>17:00 - 19:30</td>
<td>Apéro + Introduction history of the Schloss Wildegg (18:00-18:20)</td>
<td></td>
</tr>
<tr>
<td>19:30 - 22:30</td>
<td>Conference Dinner</td>
<td>+ "Young Scientist Award"</td>
</tr>
<tr>
<td>22:30 - 22:45</td>
<td>Meeting time at</td>
<td>bus stop</td>
</tr>
<tr>
<td>23:00</td>
<td>Departure:</td>
<td>bus transfer from Schloss Wildegg to Zurich</td>
</tr>
</tbody>
</table>
Sessions for Friday:

CP: Coupled Problems

Chairman: Andreas Blaszczyk
 Bastiaan Michielsen
Invited talks

<table>
<thead>
<tr>
<th>Time</th>
<th>Speaker</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00 - 09:40</td>
<td>S. Schnepp</td>
<td>The discontinuous Galerkin method on dynamical hp-meshes</td>
<td>101</td>
</tr>
<tr>
<td>09:40 - 10:00</td>
<td>N. Komarevskiy</td>
<td>Optimal design of reflecting photonic structures for space applications</td>
<td>103</td>
</tr>
<tr>
<td>10:00 - 10:20</td>
<td>M. Blome</td>
<td>Back-reflector optimization in thin-film silicon solar cells using 3D finite element simulations</td>
<td>105</td>
</tr>
</tbody>
</table>

Contributed talks

<table>
<thead>
<tr>
<th>Time</th>
<th>Speaker</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00 - 10:50</td>
<td>A. Markosyan</td>
<td>Derivation and test of high order fluid model for streamer discharges</td>
<td>107</td>
</tr>
<tr>
<td>10:50 - 11:10</td>
<td>D. Cagnoni</td>
<td>Electro-hydrodynamic numerical modelling of corona discharge</td>
<td>109</td>
</tr>
<tr>
<td>11:10 - 11:30</td>
<td>Ch. Kaufmann</td>
<td>Efficient simulation of frequency-transient mixed co-simulation of coupled heat-electromagnetic problems</td>
<td>111</td>
</tr>
<tr>
<td>11:50 - 12:30</td>
<td>G. Nicosia</td>
<td>Designing high performance electronic devices, circuits and systems</td>
<td>113</td>
</tr>
</tbody>
</table>

Coffee break

12:30 : 12:45 Closing

13:00 Lunch and Departure
<table>
<thead>
<tr>
<th>page</th>
<th>abstract/poster</th>
<th>Contributors</th>
<th>Presentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>117</td>
<td></td>
<td>Ali, Giuseppe</td>
<td>POSTER SESSION, Thursday</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td>Alparslan, Aytac</td>
<td>Tuesday, 11:50</td>
</tr>
<tr>
<td>119</td>
<td></td>
<td>Altomonte, Daniele</td>
<td>POSTER SESSION, Tuesday, AWARD SESS., Wednesday</td>
</tr>
<tr>
<td>121</td>
<td></td>
<td>Antonescu, Oana</td>
<td>POSTER SESSION, Tuesday, AWARD SESS., Wednesday</td>
</tr>
<tr>
<td>75, 123</td>
<td></td>
<td>Banagaaya, Nicodemus</td>
<td>Wednesday, 16:40 + AWARD SESSION, Wednesday</td>
</tr>
<tr>
<td>33</td>
<td></td>
<td>Bandlow, Bastian</td>
<td>Tuesday, 11:30</td>
</tr>
<tr>
<td>55</td>
<td></td>
<td>Bittner, Kai</td>
<td>Wednesday, 09:40</td>
</tr>
<tr>
<td>125</td>
<td></td>
<td>Blaszczyk, Andreas</td>
<td>POSTER SESSION, Thursday</td>
</tr>
<tr>
<td>105</td>
<td></td>
<td>Blome, Mark</td>
<td>Friday, 10:00</td>
</tr>
<tr>
<td>127</td>
<td></td>
<td>Bockholt, Marcos</td>
<td>POSTER SESSION, Thursday</td>
</tr>
<tr>
<td>77</td>
<td></td>
<td>Bodendiek, André</td>
<td>Wednesday, 17:00</td>
</tr>
<tr>
<td>129</td>
<td></td>
<td>Bollhöfer, Matthias</td>
<td>POSTER SESSION, Tuesday</td>
</tr>
<tr>
<td>97</td>
<td></td>
<td>Boyvat, Mustafa</td>
<td>Thursday, 14:30</td>
</tr>
<tr>
<td>131</td>
<td></td>
<td>Brambilla, Angelo</td>
<td>POSTER SESSION, Tuesday</td>
</tr>
<tr>
<td>135</td>
<td></td>
<td>Bugert, Beatrice</td>
<td>POSTER SESSION, Tuesday, AWARD SESS., Wednesday</td>
</tr>
<tr>
<td>109</td>
<td></td>
<td>Cagnoni, Davide</td>
<td>Friday, 11:10 + AWARD SESSION, Wednesday</td>
</tr>
<tr>
<td>61, 139</td>
<td></td>
<td>Camiola, Vito Dario</td>
<td>Wednesday, 11:10 + AWARD SESSION, Wednesday</td>
</tr>
<tr>
<td>141</td>
<td></td>
<td>Christen, Thomas</td>
<td>POSTER SESSION, Thursday</td>
</tr>
<tr>
<td>143</td>
<td></td>
<td>Ciuprina, Gabriela</td>
<td>POSTER SESSION, Wednesday</td>
</tr>
<tr>
<td>145</td>
<td></td>
<td>Colominas, Ignasi</td>
<td>POSTER SESSION, Tuesday</td>
</tr>
<tr>
<td>83</td>
<td></td>
<td>Cottet, Didier</td>
<td>Thursday, 09:40</td>
</tr>
<tr>
<td>147</td>
<td></td>
<td>Cui, Jian</td>
<td>Tuesday, 16:20 + AWARD SESSION, Wednesday</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td>De Falco, Carlo</td>
<td>Wednesday, 11:50</td>
</tr>
<tr>
<td>53</td>
<td></td>
<td>Demir, Alper</td>
<td>Wednesday, 09:00</td>
</tr>
<tr>
<td>149</td>
<td></td>
<td>Di Rienzo, Luca</td>
<td>POSTER SESSION, Tuesday</td>
</tr>
<tr>
<td>151</td>
<td></td>
<td>Emiroglu, Selçuk</td>
<td>POSTER SESSION/AWARD SESSION, Wednesday</td>
</tr>
<tr>
<td>71</td>
<td></td>
<td>Feng, Lihong</td>
<td>Wednesday, 14:30</td>
</tr>
<tr>
<td>153</td>
<td></td>
<td>Flisgen, Thomas</td>
<td>POSTER SESSION, Tuesday, AWARD SESS., Wednesday</td>
</tr>
<tr>
<td>155</td>
<td></td>
<td>Hannukainen, Antti</td>
<td>POSTER SESSION, Tuesday</td>
</tr>
<tr>
<td>157</td>
<td></td>
<td>Hebedean, Claudia</td>
<td>POSTER SESSION/AWARD SESSION, Wednesday</td>
</tr>
<tr>
<td>159</td>
<td></td>
<td>Herbertsson, Magnus</td>
<td>POSTER SESSION, Tuesday</td>
</tr>
<tr>
<td>79</td>
<td></td>
<td>Hess, Martin</td>
<td>Wednesday, 17:20</td>
</tr>
<tr>
<td>29, 161</td>
<td></td>
<td>Hiltunen, Irene</td>
<td>Tuesday, 10:50 + AWARD SESSION, Wednesday</td>
</tr>
<tr>
<td>27, 163</td>
<td></td>
<td>Hülsman, Timo</td>
<td>Tuesday, 10:00 + AWARD SESSION, Wednesday</td>
</tr>
<tr>
<td>165</td>
<td></td>
<td>Jorks, Van Hai</td>
<td>POSTER SESSION/AWARD SESSION, Wednesday</td>
</tr>
<tr>
<td>111</td>
<td></td>
<td>Kaufmann, Christof</td>
<td>Friday, 11:30</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>Klöckner, Andreas</td>
<td>Tuesday, 09:00</td>
</tr>
</tbody>
</table>

SCEE2012
<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>Session/Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>Knapp, Evelyne</td>
<td>Wednesday, 11:30 + AWARD SESSION, Wednesday</td>
</tr>
<tr>
<td>169</td>
<td>Kolmbauer, Michael</td>
<td>POSTER SESSION, Tuesday, AWARD SESS., Wednesday</td>
</tr>
<tr>
<td>103</td>
<td>Komarevskiy, Nikolay</td>
<td>Friday, 09:40 + AWARD SESSION, Wednesday</td>
</tr>
<tr>
<td>95</td>
<td>Kostetzer, Lucas</td>
<td>Thursday, 14:30</td>
</tr>
<tr>
<td>173</td>
<td>Kretzschmar, Fritz</td>
<td>POSTER SESSION, Tuesday, AWARD SESS., Wednesday</td>
</tr>
<tr>
<td>175</td>
<td>Kumar, Umesh</td>
<td>POSTER SESSION/AWARD SESSION, Wednesday</td>
</tr>
<tr>
<td>25</td>
<td>Kurz, Stefan</td>
<td>Tuesday, 09:40</td>
</tr>
<tr>
<td>49</td>
<td>Lavesson, Nils</td>
<td>Tuesday, 17:20</td>
</tr>
<tr>
<td>37</td>
<td>Le Maître, Olivier</td>
<td>Tuesday, 13:30</td>
</tr>
<tr>
<td>107</td>
<td>Markosyan, Aram</td>
<td>Friday, 10:50 + AWARD SESSION, Wednesday</td>
</tr>
<tr>
<td>179</td>
<td>Mascali, Giovanni</td>
<td>POSTER SESSION, Wednesday</td>
</tr>
<tr>
<td>73</td>
<td>Matthias, Ulrich</td>
<td>Wednesday, 16:20</td>
</tr>
<tr>
<td>67</td>
<td>Meerbergen, Karl</td>
<td>Wednesday, 13:30</td>
</tr>
<tr>
<td>41</td>
<td>Mehlin, Michaela</td>
<td>Tuesday, 14:30</td>
</tr>
<tr>
<td>181</td>
<td>Michielsen, Baastian</td>
<td>POSTER SESSION, Tuesday</td>
</tr>
<tr>
<td>59</td>
<td>Muscato, Orazio</td>
<td>Wednesday, 10:50</td>
</tr>
<tr>
<td>113</td>
<td>Nicosia, Giuseppe</td>
<td>Friday, 11:50</td>
</tr>
<tr>
<td>183</td>
<td>Pacurar, Claudia</td>
<td>POSTER SESSION, Wednesday</td>
</tr>
<tr>
<td>47</td>
<td>Paganini, Alberto</td>
<td>Tuesday, 17:00</td>
</tr>
<tr>
<td>185</td>
<td>Pehlivan, Ihsan</td>
<td>POSTER SESSION, Wednesday</td>
</tr>
<tr>
<td>187</td>
<td>Petukhov, Andrey</td>
<td>POSTER SESSION, Tuesday, AWARD SESS., Wednesday</td>
</tr>
<tr>
<td>31</td>
<td>Porro, Matteo</td>
<td>Tuesday, 11:10 + AWARD SESSION, Wednesday</td>
</tr>
<tr>
<td>191</td>
<td>Racasan, Adina</td>
<td>POSTER SESSION, Tuesday</td>
</tr>
<tr>
<td>57</td>
<td>Rahkonen, Timo</td>
<td>Wednesday, 10:00 + POSTER SESSION, Wednesday</td>
</tr>
<tr>
<td>195</td>
<td>Rathsfeld, Andreas</td>
<td>POSTER SESSION, Tuesday</td>
</tr>
<tr>
<td>197</td>
<td>Rizzo, Santi</td>
<td>POSTER SESSION, Tuesday</td>
</tr>
<tr>
<td>199</td>
<td>Salerno, Nunzio</td>
<td>POSTER SESSION, Tuesday</td>
</tr>
<tr>
<td>45</td>
<td>Schmidt, Kersten</td>
<td>Tuesday, 16:40</td>
</tr>
<tr>
<td>69</td>
<td>Schneider, Judith</td>
<td>Wednesday, 14:10 + AWARD SESSION, Wednesday</td>
</tr>
<tr>
<td>203</td>
<td>Scholz, Eike</td>
<td>POSTER SESSION, Tuesday, AWARD SESS., Wednesday</td>
</tr>
<tr>
<td>101</td>
<td>Schnepp, Sascha</td>
<td>Friday, 09:00</td>
</tr>
<tr>
<td>89</td>
<td>Schöps, Sebastian</td>
<td>Thursday, 10:40</td>
</tr>
<tr>
<td>205</td>
<td>Simsek, Murat</td>
<td>POSTER SESSION, Tuesday, AWARD SESS., Wednesday</td>
</tr>
<tr>
<td>85</td>
<td>Steinmetz, Thorsten</td>
<td>Thursday, 10:00</td>
</tr>
<tr>
<td>207</td>
<td>Stock, Andreas</td>
<td>POSTER SESSION, Tuesday, AWARD SESS., Wednesday</td>
</tr>
<tr>
<td>39</td>
<td>ter Maten, Jan</td>
<td>Tuesday, 14:10</td>
</tr>
<tr>
<td>209</td>
<td>Uyaroglu, Yilmaz</td>
<td>POSTER SESSION, Wednesday</td>
</tr>
<tr>
<td>87</td>
<td>Wever, Utz</td>
<td>Thursday, 10:40</td>
</tr>
<tr>
<td>91</td>
<td>Wiesmüller, Maximilian</td>
<td>Thursday, 10:40 + AWARD SESSION, Wednesday</td>
</tr>
<tr>
<td>93</td>
<td>Zschiedrich, Lin</td>
<td>Thursday, 14:30</td>
</tr>
</tbody>
</table>
Abstracts for Talks
Tuesday, September 11
Transformational Programming for time- and frequency-domain
EM simulation

Andreas Klöckner

Courant Institute of Mathematical Sciences, 251 Mercer St, New York, NYU kloeckner@cims.nyu.edu

Summary. Detailed, high-fidelity electromagnetic simulations entail a significant computational cost, and this cost may be managed by efficient use of modern computational resources. Modern many-core architectures pose a challenge by being both more diverse and more complicated than conventional computers. This contribution presents strategies and software packages based on run-time code generation that help deal with this emerging complexity. We demonstrate their use and effectiveness by applications to discontinuous Galerkin time-domain and integral-equation-based frequency-domain EM simulations.

1 Introduction

Graphics processing units (GPUs) and many-core machines have enjoyed tremendous impact in recent years, because their use has brought about significant cost reductions for a number of numerical methods. Yet, gains from the use of many-core machines have not been uniformly distributed across methods. Further, adoption of these machines, despite their advantages, has been far from universal. These two facts hint at underlying issues that must be resolved before the promise of these recent hardware advances is realized.

The first issue is that the choice of computational method has thus far often been made in complete ignorance of machine concerns. Examples of this are methods that may satisfy some theoretical optimality criterion, but which are outrun in practice by methods that make some concessions to the hardware and are slightly suboptimal in theory. The consequence of this is that computational methods and their implementation have merged into one joint design space that cannot easily be split into separate concerns.

The second issue is that this new hardware requires specialist knowledge to program. Not only must the programmer be aware of the sometimes intricate semantics of parallel programming models—she must also understand the performance implications of each of the (often many) semantically equivalent ways of expressing a single computation. And even if the programmer possesses some intuition on hardware response to different coding techniques, any given computational task may still require trying numerous approaches to achieve good machine utilization. Worse, this procedure has some likelihood of needing to be repeated when new generations of the same hardware, or especially when a different vendor’s hardware is to be used. All this translates to extra cost, leading many potential users to forgo the potential execution time gains of many-core implementation.

2 Transformational programming

Unlocking the benefit of GPUs for a majority of users is a thorny problem, to which many solutions have been proposed—too many to even begin to provide a concise overview in this setting. In 2009, we pioneered one very simple starting strategy that has enjoyed a measure of success in the marketplace, in the form of our packages PyCUDA and PyOpenCL, whose use will be briefly discussed. A cornerstone of this strategy was to enable run-time code generation (‘RTCG’). RTCG allows the user to apply more intelligence than customarily supplied by compilers to process and reason about the source code that carries out a desired computation. The basic flow of information in this setting is illustrated in Fig. 1. In other words, our tool provided, in some sense, the smallest possible stepping stone for the creation of additional tools.

Our current work reapplies this recipe of creating the smallest possible tool at the next higher level of abstraction, within the field of code generation. We start from the assumption that a computational task is given as a mathematical statement in index-based form, such as

\[c[i, j] = \sum_{k} a[i, k] \cdot b[k, j]. \]

Further, a set of bounds on the loop variables \(i, j \) and \(k \) in this case) is given as an intersection of affine constraints, in the notation of the isl integer set library:

\[[n] \rightarrow \{ [i, j, k] : 0 \leq i, j, k < n \}, \]

where we note that \(n \), the matrix size, enters as a run-time-variable parameter. Starting from this mathematical statement of the desired operation (along with declarations specifying data storage formats and types), the user may then issue transformations that make the generated code more suitable for a certain piece of target hardware by better respecting granularities such as machine vector widths and appropriate sizing of prefetch buffers. Importantly, each
such transformation is guaranteed to preserve the operational semantics meaning of the original, untransformed kernel—but, given the right transformations, may execute far faster on a given piece of hardware. Available transformations include strip-mining, loop unrolling, parallelization, prefetching, cache management, and many more.

Like our previous tools, this code generator, called ‘loo.py’, cannot solve all problems encountered in making GPU programming accessible. Nonetheless, we claim that what it provides is useful:

- **Increase the trial rate of an expert programmer.** Manually carrying out the transformations allowed by the tool is a tedious, error-prone task. Finding and correcting these errors takes time that can be put to better use.
- **Provide a stepping stone on which more tools can be built.** Loo.py is deterministic and does not attempt to guess or be intelligent on the user’s behalf. Tools with such intelligence can be built on top of loo.py with relative ease.
- **Facilitate performance portability.** Since loo.py clearly distinguishes the description of the desired computation from the transformations achieving hardware specialization, this latter part may be changed or adapted to new hardware without having to revisit the basic computational goal.
- **Channel thought through language design.** The tool enforces a clear separation between mathematical and implementation concerns, even if both influence each other in a conceptually more abstract design space.

In proposing this tool, we have built upon experience gained from earlier work [2] on the type of transformations necessary in GPU programming. In the next section, we discuss how loo.py conceptually and factually supersedes this research.

While loo.py bears some similarity to prior efforts in transformational programming (e.g. CUDA-CHILL [3]), it is novel because, first, it is not a source-to-source translator, but instead views transformations as first-class objects in its language, and second, it integrates into an existing ecosystem of GPU scripting tools centered on PyOpenCL.

3 Evaluation and Conclusions

We evaluate our tool by applying it to time-domain EM simulations using discontinuous Galerkin methods as well as to singular quadrature tasks originating from electromagnetic problems in the frequency-domain, demonstrating the effectiveness of the language exposed along with its applicability to real-world tasks in electromagnetic simulation. We further show performance results supporting the notion that high-performance codes on a broad variety of hardware can be reached by the provided transformations.

In providing loo.py, we hope to build a bridge between computer science innovation in tool building, and application scientist needs. We hope that the tool may provide a basis for innovation and discussion in methods for producing both prototype- and production-grade EM solvers with the least possible effort.

Acknowledgement. The author’s research was partially funded by AFOSR under contract number FA9550-07-1-0422, through the APOS/NSEEFF Program Award FA9550-10-1-0180 and also under contract DEFG0288ER25053 by the Department of Energy. Loo.py is joint work with Tim Warburton. Time-domain EM is joint work with Jan Hesthaven and Tim Warburton. Frequency-domain EM is joint work with Leslie Greengard and his group.

References

Improved Electromagnetic Modelling and Simulation of Axial Flux Machines

Ossi Niemimäki and Stefan Kurz
Tampere University of Technology, Electromagnetics, P.O. Box 692, FI-33101 Tampere, Finland
{ossi.niemimaki, stefan.kurz}@tut.fi

Summary. Axial-field permanent magnet synchronous machines can be tackled by means of the so-called quasi 3D approach, where the 3D problem is reduced to a family of decoupled 2D problems. This approach is placed in proper mathematical context and the modelling error is discussed. The resulting 2D problems are cast into standard radial flux topology.

1 Introduction

Axial-field permanent magnet synchronous machines enjoy increasing importance. In particular, their flat and compact shape renders them attractive for several applications, for instance in electric vehicles, elevator drives, or wind generators. However, when it comes to electromagnetic modelling and simulation, there is much less literature and tools available compared to the standard radial flux topology. Since full transient 3D Finite Element simulations are still at the feasibility limit, the so called quasi 3D approach is often reported in literature, both for numerical [3] and analytical [1, 2, 4, 5] modelling.

The machine geometry is represented by a number of cylindrical slices, compare Fig. 1(a). Each slice is then unrolled, which yields the flat geometry depicted in Fig. 1(b), which we will call translational model. Eventually, the slice might be distorted into the segment shown in Fig. 1(c), which we will call rotational model. The latter corresponds with the symmetry cell in the cross section of a standard radial flux permanent magnet synchronous machine, and can therefore be computed by well-established methods.

2 Mathematical Modelling

In references [1] – [5] it is usually taken for granted that the magnetic flux in the machine has no radial component. It is then claimed that each translational or rotational model can be analyzed separately, based on a single component magnetic vector potential. The torque of the machine is obtained by adding up the contributions of the individual slices. We will put this approach into proper mathematical context. For the purpose of this paper we restrict ourselves to a magnetostatic model for each time step.

The magnetostatic field in the 3D model is governed by \(\text{curl} \mu^{-1} \text{curl} A = J \), where \(\mu \) is the magnetic permeability, in general dependent on the field, \(A \) is the magnetic vector potential, \(B = \text{curl} A \), and \(J \) is the total current density, where \(\text{div} J = 0 \) holds. \(J \) takes into account both the stator currents as well as the permanent magnets, in terms of magnetization currents. We introduce cylindrical coordinates \((r, \varphi, z) \), compare Fig. 1 left. The vector potential can be gauged such that \(A_z = 0 \) holds, without loss of generality. We introduce the second order differential operators...
\[
\Delta \phi_c = \partial_\rho \mu^{-1} \frac{1}{\rho^2} \partial_\rho \phi + \partial_z \mu^{-1} \partial_z \phi,
\]
\[
\Delta \tau = \partial_\rho \mu^{-1} \frac{1}{\rho} \partial_\rho \tau + \partial_z \mu^{-1} \partial_z \tau.
\]

In the chosen gauge, the double curl equation reads
\[
\begin{bmatrix}
\Delta \phi_c \\
-\partial_\rho \mu^{-1} \frac{1}{\rho} \partial_\rho \phi
\end{bmatrix}
\begin{bmatrix}
A_r \\
A_\phi
\end{bmatrix}
= -
\begin{bmatrix}
J_r \\
J_\phi
\end{bmatrix}.
\tag{1}
\]

This system can be interpreted as a family of problems defined on cylinders \(r = \text{const.} \) in terms of a radial potential \(A_r \), plus a family of problems defined on half-planes \(\phi = \text{const.} \) in terms of an azimuthal potential \(A_\phi \). Both families are coupled via off-diagonal terms. It can be shown that if and only if \(B_r = 0 \) holds, the field can be described in terms of \(A_r \) alone. In practice, in axial flux machines \(B_r \approx 0 \) holds, so the first family dominates over the second.

This motivates working with the modelling assumption \(B_r = 0 \), that is, \(A_\phi = 0 \). In this case, the first equation of (1) reduces to \(\Delta \phi_c A_r = -J_r \), which can be solved on each cylinder \(r = \text{const.} \) separately. The second equation gives rise to a residual
\[
\mathcal{R} = \partial_\rho \mu^{-1} \frac{1}{\rho} \partial_\rho A_r - J_\phi = -\partial_\rho H_z - J_\phi,
\]
where \(\mathbf{H} = \mu^{-1} \mathbf{B} \) holds. The residual gives an indication for the error introduced by the modelling assumption \(B_r = 0 \). For an interpretation see Fig. 2.

For fixed radius \(r \), introduce a new coordinate \(\ell = r \phi \). In coordinates \((\ell, z)\) the equation to be solved for \(A_r \) reads \((\partial_\ell \mu^{-1} \partial_\ell \mu^{-1} \partial_\ell) A_r = -J_r \), the governing equation for the translational model, Fig. 1(b).

From a practical point of view, existing software for the numerical analysis of standard radial flux machines should be employed. To that end, a transformation is required that maps lines \(\ell = \text{const.} \) to radial half-lines, while lines \(z = \text{const.} \) shall be mapped to concentric circles. We pick the conformal map \(\mathcal{Z} = c \exp(\mathcal{W}/r) : \mathcal{W} = \ell + i z \mapsto \mathcal{Z} = x + iy = r \exp(i \phi) \), for fixed \(c, r \in \mathbb{R} \). The transformation is depicted in Fig. 3.

Let \(A_r(x, y) = A_\ell(\ell, z) \), \(J_r(x, y) = J_\ell(\ell, z) \), which yields \((\partial_\ell \mu^{-1} \partial_\ell \mu^{-1} \partial_\ell) A_r = -h^2 J_\ell \), with the conformal factor \(h = r/\rho \). This is the usual magnetostatic 2D vector potential formulation, the governing equation of the rotational model, Fig. 1(c).

An example for this approach will be given in the full paper.

Acknowledgement. Financial support by KONE is acknowledged.

References

Computation of Optimal Model Parameters of an Extended Brauer Model for Ferromagnetic Material Behaviour

Timo Hülsmann¹, Andreas Bartel¹, Sebastian Schöps¹, and Herbert De Gersem²

¹ Bergische Universität Wuppertal {huelsmann,bartel,schoeps}@math.uni-wuppertal.de, ² Katholieke Universiteit Leuven Herbert.DeGersem@kuleuven-kulak.be

Summary. Simulation of low-frequency magnetic fields in electric machines demands for implicit time integration. For the nonlinear reluctivity of the ferromagnetic yoke, a smooth material curve is needed to avoid convergence problems in Newton’s method. In this paper the Brauer model is extended to fit the material behaviour at low fields more accurately and to guarantee physically correctness for high fields. Furthermore, a procedure to obtain optimal parameters is developed and discussed using a numerical example.

1 Introduction

Typically Finite Element (FE) based simulations of eddy currents use the magnetic vector potential \(\mathbf{A} \) and the curl-curl equation

\[
\frac{\partial \mathbf{A}}{\partial t} + \nabla \times (\mu \nabla \times \mathbf{A}) = \mathbf{J}_e,
\]

with conductivity \(\sigma \), reluctivity \(\nu \) and source current density \(\mathbf{J}_e \). For iron parts the material relation \(\mathbf{H}(\mathbf{B}) = \nu \mathbf{B} \) becomes nonlinear, where \(\mathbf{B} = \nabla \times \mathbf{A} \) is the magnetic flux density and \(\mathbf{H} \) the magnetic field density. We neglect anisotropy and hysteresis. Hence, we can apply \(\mathbf{H} = \nu \mathbf{B} \) in terms of \(\mathbf{H} := \|\mathbf{H}\|_2 \) and \(\mathbf{B} := \|\mathbf{B}\|_2 \). Typical models are spline interpolations of measurements, [3], and Brauer’s model, [1].

\[
H_{br}(\mathbf{B}) = \nu_0 (\mathbf{B}^2) \mathbf{B} = (k_1 \nu_0 \mathbf{B}^2 + k_2) \mathbf{B}.
\]

Both allow a simple calculation of the reluctivity \(\nu = \nu(\mathbf{B}^2) \) and its derivative \(\frac{d \nu}{d \mathbf{B}} \), needed in the computation of material matrices occurring in the space discretization of (1), see e.g. [2]. Brauer’s model is well understood, e.g., a sensitivity analysis shows that currents and fluxes through machines are most sensitive w.r.t. to perturbations in \(k_2 \) followed by \(k_1 \) and \(k_s \). The model is sufficiently accurate for medium fields but the behavior for low fields (Rayleigh region) and high fields (full saturation, i.e., \(\frac{d \nu}{d \mathbf{B}} = \nu_0 \) as for vacuum) cannot be represented accurately.

2 Extended Brauer model

For high fields the material behaves like vacuum

\[
H_{sat}(\mathbf{B}) = \nu_0 (\mathbf{B} - B_s) + H_s.
\]

For low fields the dependence of \(\mathbf{B} \) on \(\mathbf{H} \) is quadratic:

\[
H_{br}(\mathbf{B}) = \nu_0 (\mathbf{B}^2) \mathbf{B} = (k_1 \nu_0 \mathbf{B}^2 + k_2) \mathbf{B}.
\]

with initial reluctivity \(\nu_{init} \) and Rayleigh constant \(\alpha \). In combination we obtain a \(H(\mathbf{B}) \)-curve as shown in Fig. 1 with interface points \((B_m, H_m) \) and \((B_s, H_s) \).

Let us determine the coefficients of an extended Brauer model s.t. the global model is continuous differentiable. The classical model does not simply allow to replace low field and high field parts. A shift of the Brauer model enables to fulfill the continuity and differentiability conditions at \(B_m \):

\[
H_{br}(\mathbf{B}) = \left(k_1 (\nu_0 \mathbf{B}^2 + B_s) - 1 \right) + \nu_{d,m}(\mathbf{B} - B_m) + H_m
\]

with \(\nu_{d,m} := \frac{dH_{br}}{d\mathbf{B}}(\mathbf{B}_m) \) the differential reluctivity at the end of the Rayleigh region. We define the function

\[
H(\mathbf{B}) := \begin{cases}
H_{br}(\mathbf{B}) & \text{if } 0 \leq \mathbf{B} < B_m, \\
H_{sat}(\mathbf{B}) & \text{if } B_s \leq \mathbf{B} < B_m.
\end{cases}
\]

To fix the model parameters \(k_1 \) and \(k_2 \), we use the continuity conditions \(H_{br}(B_s) = H_s \) and \(\frac{dH_{br}}{d\mathbf{B}}(B_s) = \nu_0 \), and solve each equation for \(k_1 \):

\[
k_1 = \frac{H_s - H_m}{\nu_0 \nu_{d,m}} \left(\frac{B_s - B_m}{k_2 (B_s - B_m)^2} - 1 \right),
\]

\[
k_1 = \frac{B_s - B_m}{2 k_2 (B_s - B_m)^2 + 1} \left(\frac{B_s - B_m}{k_2 (B_s - B_m)^2} - 1 \right).
\]

From (3) and (4) we find a nonlinear equation for \(k_2 > 0 \), which is solvable under the conditions \(\nu_0 > \nu_{d,m} \)

\[
0 < \frac{B_s - B_m}{\nu_0 - \nu_{d,m}} < \frac{1}{3}
\]

and \(B_s > B_m > 0, H_s > H_m > 0, \nu_0 > \nu_{d,m} \).
The Rayleigh constant can be obtained by $\alpha := (B_m/H_m - 1/v_{\text{init}})/H_m$. Therefore the model (2) can be fixed from the data $p := (v_{\text{init}}, B_m, H_m, B_s, H_s)$.

3 Optimal Model Parameters

Let us consider measurement points (B_j, H_j), $j = 1, \ldots, N$, of a ferromagnetic material. We assume monotonicity of the data and a distinctive Rayleigh region.

To find optimal model parameters we solve a nonlinear least squares (NLS) problem, i.e.,

$$\min_p \sum_{j=1}^{N} \frac{(H(B_j; p) - H_j)^2}{H_j^2}. \quad (5)$$

Proper initial guesses are important because of the nonlinearity. A procedure for this purpose is given by:

i) The fraction of first non-zero measurement points approximates v_{init}. Then find index r that minimizes $(H_{r+1} - H_r)/(B_{r+1} - B_r)$, (B_r, H_r). It is an approximation to (B_m, H_m). Compute α and $v_{\text{d, m.}}$.

ii) Approximate the beginning of the saturation region with the last measurement points. Solve (3) and (4) for k_1 and k_2 by replacing v_0 with the secant slope ΔV_{N} of the last two measurement points.

iii) If $V_N \approx v_0$, use the last point as approximation of (B_s, H_s). Otherwise solve $\frac{dH}{dB}$ at B_s and compute $H = H_{\text{obs}}(B_s)$.

iv) Solve the NLS problem (5).

4 Example

For validation we created test data from (2) using $v_{\text{init}} = 400 \text{mH}^{-1}$, $(B_m, H_m) = (0.5 \text{T}, 70 \text{A/m}^{-1})$ and $(B_s, H_s) = (2 \text{T}, 100 \text{kA/m}^{-1})$. We sample the first two regions with 8 equidistant points. We incorporate Gaussian measurement noise by $H_j = max(0, H_j/(1 + \sigma X_i))$, where $X_i \sim N(0, 1)$ and $\sigma = 0.1$. Fig. 2 and 3 show the fitted results. The proposed initial guess is sufficient to achieve convergence of the NLS problem.

We obtain a curve close to the original curve.

The extended Brauer model is tested in a 2-D FE simulation of a transformer at no-load. Simulation results with the extended Brauer model with parameters from above are used as a reference. For the spline interpolation (cubic and Fritsch-Carlson spline) we smoothened the noisy samples in the Rayleigh region with a moving average filter. Errors of the no-load current i through the device are depicted in Fig. 4.

The original Brauer model is the computationally least expensive but yields large errors in comparison to the reference solution. It cannot match the shape of the material curve for low and high fields. Spline interpolated measurements yield medium errors but need a high number of Newton steps to converge, cf. (4). The extended Brauer model is only slightly more expensive than the original Brauer model but is the most accurate also in Fig. 4. It also recovers the reference curve.

References

Broad Band Surface Impedance Boundary Conditions for Higher Order Time Domain Discontinuous Galerkin Method

Irene Hiltunen\(^1\), Erion Gjonaj\(^2\), and Thomas Weiland\(^2\)

\(^1\)Graduate School of Computational Engineering, Technische Universität Darmstadt, Dolivostr. 8, D-64293 Darmstadt
\(^2\)Institut für Theorie Elektromagnetische Felder, Technische Universität Darmstadt, Schloßgartenstr. 8, D-64289 Darmstadt

hiltunen@temf.tu-darmstadt.de, gjonaj@temf.tu-darmstadt.de, weiland@temf.tu-darmstadt.de

Summary. An implementation of the broad band Surface Impedance Boundary Condition (SIBC) for the high order Discontinuous Galerkin (DG) method in the time domain is presented. In order to treat the frequency dependent impedance function a set of auxiliary differential equations is introduced. The effect of the DG approximation order on the accuracy will be studied, and the results will be compared with the conventional time domain Finite Element Method.

1 Introduction

Time domain modeling is very attractive for wide band electromagnetic problems, since it allows to compute for a large range of frequencies in a single simulation. However, when the frequency band of interest is wide, the dispersive nature of material parameters, i.e. their variation with respect to frequency, needs to be considered. In order to model dispersive electromagnetic materials in time domain simulations, one generally needs to evaluate one or more convolution integrals. Clearly a direct computation of convolution terms is too expensive for every practical computation. For this purpose, several numerically efficient approaches have been proposed. One approach is a recursive convolution \([7]\). Another technique which is particularly suited for explicit time domain simulations is the Auxiliary Differential Equation (ADE) method. In the following, ADE is applied in the context of SIBC for arbitrary frequency dependent electric conductivities. Finite Difference Time Domain method (FDTD) \([11]\) is widely used for time domain simulations. It leads to explicit time stepping and it is straightforward to implement. However, FDTD has two important disadvantages: First, the method loses substantial accuracy at curved geometrical boundaries. Second, FDTD is at most 2nd order accurate, thus, it suffers under large numerical dispersion errors at high frequencies. Finite Element Method (FEM) \([12]\) is very accurate as far as the modeling of arbitrary geometries is concerned. However, the time domain FEM leads to implicit time stepping \([5]\), and is therefore numerically extremely expensive. The Time Domain Discontinuous Galerkin Method (DG) \([3]\) combines the advantages of the aforementioned methods: it is free of numerical dispersion, modeling of arbitrary geometries is straightforward, and due to the global discontinuity of the basis functions, the resulting time stepping scheme is explicit. However, due to the discontinuity of basis functions at cell interfaces, unphysical spurious modes will occur. A possible cure to the problem of spurious modes is the application of various penalization methods as proposed, e.g., in \([3]\), \([1]\).

In this study, we will describe the implementation of a wide band SIBC for higher order DG by means of the ADE method. Furthermore, the effect of discretization order, rational approximation order for the impedance function as well as the impact of penalization on the accuracy of DG simulations with SIBC will be investigated.

2 DG Method

In this study, we will consider the Maxwellian initial value problem. The three-dimensional computational domain \(\Omega\) is discretized into \(N\) non-overlapping elements, and on the boundary \(\partial \Omega\), the SIBC is applied. Within an element, the electric field \(E\) and the magnetic flux density \(B\) are approximated by a linear combination of vectorial basis functions \(\phi_E\) and \(\phi_B\), respectively. As both of the basis functions, \(\phi_E\) and \(\phi_B\), are defined cell-wise without global continuity, in the DG method, a numerical flux approach is applied in order to impose the necessary continuity at the interfaces between mesh cells in the weak sense. A detailed description of the method as well as of the approximation functions, \(\phi_E\) and \(\phi_B\), used in the present implementation is given in \([1]\).

3 The SIBC Approach

Modeling of media with large but finite electrical conductivities typically leads to very dense meshes and thus to small time steps as required for stability in explicit time domain simulations. Therefore, it is desirable to exclude the lossy media from the computational domain. This can be done by introducing at the boundary surface of the conductive do-
main impedance-like conditions, which provide a relationship between the tangential electric field to the tangential magnetic field components. The classical SIBC was introduced by Leontovich (cf. [10]). It assumes the lossy surface to be planar and ignores the tangential variation of the field quantities. The error of the Leontovich SIBC is order of $O(\delta^2)$, where δ is skin depth, which makes it especially suitable for high frequencies. The second order SIBC [6] takes into account also the curvature of the surface. It is, furthermore, possible to construct higher order, thus, more accurate SIBC by taking into account, in addition, the tangential variation of the field components along the lossy surface [8]. When the thickness of the conductive medium is of the order of skin depth, the electromagnetic fields on the different sides of lossy medium interact with each other. Also this type of problems can be modeled by means of SIBC, using e.g. Sarto’s [9] approach.

4 Approximation of Impedance Function

In order to transform the dispersive impedance function into the time domain, it is first approximated in the frequency domain as a series of rational functions [2]. The rational approximation for the tangential electric field can be written as:

$$Y(\omega)E_t \approx Y_0 E_t + \sum_{k=1}^{P} \frac{Y_i}{\omega - \omega_k},$$

(1)

where E_t is tangential electric field on the surface, P is the order of the rational approximation, Y_0 free space admittance, Y_i and ω_i are approximation parameters. Let us rewrite the rational approximation given in (1) as

$$Y(\omega)E_t \approx Y_0 + \sum_{i=1}^{P} Y_i .$$

The sIBC condition transforms in the time domain to

$$Y_0 = Y_0 E_t \quad \text{and} \quad \frac{d}{dt} Y_i - \omega_i Y_i = Y_i E_t .$$

(2)

Equation (2) represent the auxiliary differential equations of the ADE method which need to be solved for in the time domain together with the full set of Maxwell’s equations.

5 System of Equations

The system of discrete equations to be solved in the time domain can be written as:

$$\begin{align*}
C_e e + \frac{d}{dt} M_\mu h &= 0 \\
C_h h - \frac{d}{dt} M_e e &= C_Y \sum_{i=0}^{P} Y_i \\
Y_0 &= Y_0 e \\
\frac{d}{dt} Y_i - \omega_i Y_i &= Y_i e \quad \text{for } i = 1 \ldots P,
\end{align*}$$

(3)

where C_e and C_h are curl-matrices obtained by high order DG discretization, C_Y is so called “admittance flux” matrix, and M_μ and M_e are block-diagonal mass matrices. In the full paper, the numerical accuracy and efficiency of this approach with respect to discretization order for different rational function approximations [1] will be discussed.

6 Summary

Dispersive SIBC will be implemented for time domain DG method in order to model a wide frequency band at a single simulation. The frequency dependent conductivity of lossy surfaces is considered in time domain by auxiliary differential equations. We will study the accuracy of the solution for different DG discretization orders and impedance function approximations, and compare our results with the standard SIBC-FDTD method.

Acknowledgement. This work is supported by the Graduate School of Computational Engineering at Technische Universität Darmstadt.

References

Bulk and Interface Balance Equations for Organic Solar Cell Simulation

Matteo Porro1,2, Carlo de Falco1,3, Riccardo Sacco1, and Maurizio Verri1

1 Dipartimento di Matematica “F. Brioschi”, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
2 Center for Nano Science and Technology @Polimi, Istituto Italiano di Technologia, via Pascoli 70/3, 20133 Milano, Italy
3 MOX Modeling and Scientific Computing
matteo.porro@mail.polimi.it, carlo.defalco@polimi.it, riccardo.sacco@polimi.it, maurizio.verri@polimi.it

Summary. In this communication, we present a computational model for heterojunction Organic Solar Cells (OSCs) consisting of a system of semilinear PDEs and ODEs. The mathematical model is discussed, focusing on the transmission conditions at material interfaces, together with the numerical method used for its solution. Steady-state and transient simulations are performed on realistic devices with various interface morphologies.

1 Introduction and Motivation

In the design of efficient OSCs the impact of material interface morphology on performance is currently considered to be of paramount importance. For this reason, material scientists are putting much of their research effort into techniques for controlling interfaces down to the nanoscale, for example by studying materials that have the ability to self-assemble into ordered nanostructures during the deposition process. For the same reason, computational models that allow to estimate device performance carefully accounting for the material interface geometry and the phenomena occurring on it are in high demand. Previous approaches in this direction can be found in [1] (for biplanar devices) and [7]. In this communication we present our work aimed at extending the model of [1] to treat arbitrary multidimensional morphologies.

2 Mathematical Model

Let Ω be an open subset of \mathbb{R}^d, $d=1,2,3$, representing the geometrical model of an OSC and \mathbf{v} be the unit outward normal vector over the boundary $\partial \Omega$. The device structure is divided into two open disjoint subregions, Ω_n (acceptor) and Ω_p (donor), separated by a regular surface Γ on which \mathbf{v}_Γ is the unit normal vector oriented from Ω_p into Ω_n. The cell electrodes, cathode and anode, are denoted as Γ_C and Γ_A, respectively (see Fig. 1 for the 2D case). Let e, n and p denote the volumetric densities of excitons, electrons and holes in the cell, respectively, P be the areal density of polaron pairs and $\mathbf{\varphi}$ be the electric potential. For any function $f: \Omega \to \mathbb{R}$, let $\int f := f_n \int \Omega_n + f_p \int \Omega_p$ and f_Γ being the traces of f on Γ from Ω_n and Ω_p, respectively. Excitation phenomena occurring in the bulk are described by the parabolic problem:

\[\begin{align*}
\frac{\partial e}{\partial t} - \nabla \cdot (D_e \nabla e) &= Q - \frac{e}{\tau_e} \quad \text{in } \Omega \setminus \Gamma, \\
\nabla \cdot (J_e) &= 0 \quad \text{on } \Gamma, \\
\nabla \cdot [\mathbf{v}_\Gamma \cdot \nabla e] &= \eta_{\text{rec}} P - \frac{2H}{\tau_{\text{diss}}} e \quad \text{on } \Gamma, \\
e &= 0 \quad \text{on } \Gamma_C \cup \Gamma_A, \\
e(\mathbf{x},0) &= 0, \quad \forall \mathbf{x} \in \Omega.
\end{align*} \tag{1a} \]

Dissociation/recombination of excitons, electrons and holes into polaron pairs at the material interface is described by the ODE:

\[\begin{align*}
\frac{\partial P}{\partial t} &= \frac{2H}{\tau_{\text{diss}}} e + 2H \gamma_{\text{np}} - (k_{\text{diss}} + k_{\text{rec}}) P \quad \text{on } \Gamma, \\
P(\mathbf{x},0) &= 0, \quad \forall \mathbf{x} \in \Gamma.
\end{align*} \tag{1b} \]

Transport of photogenerated electrons in the acceptor domain Ω_n is described by the parabolic problem:

\[\begin{align*}
\frac{\partial n}{\partial t} + \nabla \cdot \mathbf{J}_n &= 0 \quad \text{in } \Omega_n, \\
\mathbf{J}_n &= -D_n \nabla n + \mu_e n \mathbf{\varphi} \quad \text{in } \Omega_n, \\
-\mathbf{v}_\Gamma \cdot \mathbf{J}_n &= -k_{\text{diss}} P + 2H \gamma_{\text{np}} \quad \text{on } \Gamma, \\
-k_e \mathbf{v}_\Gamma \cdot \mathbf{J}_n + \alpha_{\text{np}} n &= \beta_n \quad \text{on } \Gamma_C, \\
n(\mathbf{x},0) &= 0, \quad \forall \mathbf{x} \in \Omega.
\end{align*} \tag{1c} \]

A parabolic problem completely similar to (1c) describes hole transport in the donor domain Ω_p. The dependence of the electric potential and field on the space charge density in the cell is described by the Poisson equation:

\[\mathbf{v} = \nabla \varphi \quad \text{in } \Omega \setminus \Gamma, \quad \nabla \cdot \mathbf{v} = 0 \quad \text{on } \Gamma. \]

Fig. 1. OSC cell geometry.
\[
\begin{align*}
\n\n\frac{\nabla \cdot (-\varepsilon \nabla \phi)}{} &= -qn & \text{in } \Omega_n, \\
\frac{\nabla \cdot (-\varepsilon \nabla \phi + \varepsilon \nabla \cdot \mathbf{J})}{=} &= +q \rho & \text{in } \Omega_p, \\
[\phi] &= [[(\nabla \cdot \mathbf{J}) - \varepsilon \nabla \phi)] = 0 & \text{on } \Gamma, \\
\phi &= 0 & \text{on } \Gamma^0, \\
\phi &= V_{\text{appl}} + V_{\text{bi}} & \text{on } \Gamma^1.
\end{align*}
\]

A list of the model parameters with their corresponding physical meaning is reported in Table 1. The PDE/ODE model \(1\) has been introduced in \(2\) and represents a multi-dimensional generalization of the 1D formulation proposed in \(1\). System \(1\) is completed by periodic boundary conditions on \(\Gamma^0 \cup \Gamma^1\). We notice that the dissociation and recombination processes occurring at the donor-acceptor interface \(\Gamma\) are dealt with by the nonlinear transmission conditions \(1\) and \(2\), whose dependence on the local electric field magnitude and orientation is contained in the polaron dissociation rate constant \(k_{\text{diss}}\) \(2\).

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu_e, \mu_D)</td>
<td>Mobility and diffusivity of species (i, \ i = e, n, p)</td>
</tr>
<tr>
<td>(Q)</td>
<td>Exciton generation rate</td>
</tr>
<tr>
<td>(\tau_e, \tau_{\text{diss}})</td>
<td>Exciton decay and dissociation times</td>
</tr>
<tr>
<td>(k_{\text{rec}}, k_{\text{diss}})</td>
<td>Polaron recombination and dissociation rates</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>Electron-hole recombination rate constant</td>
</tr>
<tr>
<td>(\eta)</td>
<td>Single exciton fraction</td>
</tr>
<tr>
<td>(H)</td>
<td>Active layer thickness</td>
</tr>
</tbody>
</table>

3 Algorithms and Simulation Results

System linearization (by a quasi-Newton method) and approximation are carried out by adapting the approach used in \(3\). Time advancing is treated using Rothe’s method and adaptive BDF formulas, while the exponentially fitted Galerkin finite element method studied in \(5\) is used for spatial discretization. The interface conditions at the donor-acceptor interface are taken care of by means of the substructuring techniques described in \(6\).

Model \(1\) is here validated in both stationary and transient regimes. In a first set of simulations, we study the finger-shaped heterostructure considered in \(7\). Fig. 2 shows the output current-voltage characteristics predicted by our model, which is in excellent agreement with that computed in \(7\). In a second set of simulations, we test the ability of the model to describe the behaviour of a cell characterized by a complex interface morphology. Fig. 3 shows the free carrier densities computed for a “curly-shaped” geometry at short circuit working conditions. In a third set of simulations, we test the model in the time-dependent case. Fig. 4 shows the cell current response under two different biasing conditions for a planar device geometry similar to that studied in \(1\). Ongoing activity is devoted to the investigation of the working principles of the light-harvesting device described in \(4\).

![Free carrier densities for a device with complex morphology](image-3)

Fig. 3. Contact current density transient at two different voltage regimes.

Fig. 4. Free carrier densities for a device with complex morphology.

References

Electromagnetic Eigenmode Characterization by Sensitivity Analysis

Bastian Bandlow and Rolf Schuhmann

FG Theoretische Elektrotechnik, EN 2, Technische Universität Berlin, Einsteinufer 17, D-10587 Berlin, Germany
bandlow@tet.tu-berlin.de, schuhmann@tet.tu-berlin.de

Summary. Computational models of resonant electromagnetic structures which are bounded by perfectly matched layers have an eigenvalue spectrum which is spoilt by eigenmodes which reside within these layers. In the context of the finite integration technique we apply a computational inexpensive sensitivity analysis in order to identify those undesired eigenmodes.

1 Motivation

The computation of electrodynamic eigenmodes of radiating structures is a challenging task, since the transition to free-space at the boundaries has to be modeled. An established technique to model that transition is the use of a perfectly matched layer (PML) \[5\]. The PML causes the eigenvalue problem of Maxwell’s equations to become complex for structures of any material. Moreover, the PML consists of artificial materials whose parameters can be large in magnitude, which causes some eigenmodes to be trapped within the PML. In this contribution we show an computationally efficient analysis which is based on the eigenvalues’ sensitivity that is able to decide whether a specific eigenmode is bound to the PML or the structure. The approach follows an adjoint technique which is known since quite some time \[2\][3]. Recent advances considering the sensitivity analysis of waveguide models has been shown in \[1\].

2 Computational Approach

The discrete Maxwell’s eigenvalue problem is set up in the framework of the finite integration technique (FIT) \[4\]. The Maxwell grid equations can be written down in frequency domain, neglecting currents and charges, for dispersive materials as

\[C \hat{e} = -s M_\mu(s) \hat{h}, \quad C^T \hat{h} = s M_\epsilon(s) \hat{e}, \tag{1} \]

where \(C \in \mathbb{R}^{N \times N} \) is the topological curl-operator consisting of entries with \(\{-1;0;1\} \) and \(s = io_1 = 2\pi f \) is the frequency. The constitutive relations read

\[\hat{d} = M_\epsilon(s) \hat{e} \quad \text{and} \quad \hat{b} = M_\mu(s) \hat{h}. \tag{2} \]

An absorbing boundary condition based on complex metric stretching perfectly matched layer (PML) \[5\] can be introduced in FIT in a straight-forward manner. Since the PML is only in the continuous case perfectly matched a remaining reflection error is introduced that can be controlled by the number and the step width of the absorbing layers. The introduction of dielectric and magnetic losses in the PML cause the diagonal material matrices \(M_\epsilon \) and \(M_\mu \) to become complex. The actual frequency dependency of the components of the material matrices on the PML parameters reads exemplarily for the permeability

\[\mu^{-1}(s) = \frac{1 + \frac{n_3}{2} + \frac{n_2}{2}}{1 + \frac{n_3}{2} + \frac{n_2}{2}} \mu_0^{-1}. \tag{3} \]

In frequency domain we solve the curl-curl eigenmode equation for complex resonance frequencies \(-s^2 \) and grid-voltages \(\hat{e} \), which are derived from \(\hat{1} \) as

\[A(s) \hat{e} = -s^2 \hat{e}, \quad A(s) = M_\epsilon^{-1}(s) C^T M_\mu^{-1}(s) C. \tag{4} \]

At this point the eigenvalue problem \(\hat{4} \) has a polynomial-type nonlinearity. Since the PML is designed to operate quite well over a certain frequency range, the frequency dependent material matrices are evaluated at the estimation frequency \(s_{est} \), in order to linearize the eigenvalue problem \(\hat{4} \). Yet, the system matrix \(A(s) \) remains complex with eigenvalues \(-s^2 \). The solution can be computationally expensive, but yields the modal field distributions as well as their resonance frequency and quality factors \(Q = 3 / 2|R(s)| \). Moreover, the spectrum is spoilt by undesired modes, which are trapped within the PML and occur at similar frequencies like the desired modes.

3 Eigenvalue Sensitivity Analysis

We start with a complex eigenvalue problem of the type \(Ax = \lambda x \) and its derivative

\[(A' - \lambda')x + (A - \lambda)x' = 0. \tag{5} \]

The primed quantities denote derivations with respect to the design parameter \(p \) e.g. \(A' := \partial A / \partial p \). Following the standard perturbation theory \(\hat{2} \) the multiplication from the left with the corresponding left eigenvector \(y^H \) and substitution of \(y^H A = \lambda y^H \) (the definition of the left eigenvalue problem) finally yields the derivative of the eigenvalue
\[\lambda' = \frac{\mathbf{y}^H \mathbf{A}^H \mathbf{x}}{\mathbf{y}^H \mathbf{x}}, \]

which could be further simplified, if the left and right eigenvectors were orthonormalized. The left eigenvectors \(\mathbf{y}^H\) of a matrix eigenvalue problem \(\mathbf{y}^H \mathbf{A} = \lambda \mathbf{y}^H\) can be computed as the right eigenvectors of the matrix’ adjoint \(\mathbf{A}^H \mathbf{y} = \lambda' \mathbf{y}\), where \(^*\) denotes the complex conjugate.

4 Application to an Example in the FIT

The FIT system matrix \(\mathbf{A}\) from (4) can be made complex-symmetric by a similarity transform with \(\mathbf{M}_{-1/2}\). The adjoint of the complex-symmetrized matrix satisfies

\[\mathbf{A}_{\text{sym}}^H = \mathbf{A}_{\text{sym}}^*, \]

which is simply the complex-conjugate matrix. Eigenvectors of \(\mathbf{A}_{\text{sym}}^H\) are identified as the dielectric grid fluxes \(\tilde{\mathbf{d}}\). However, instead of solving the eigenvalue problem itself we can get the dielectric grid fluxes simply from the matrix-vector multiplication given in the material relation (2).

Figure 1 shows the structure for our numerical tests, which consists of a small dielectric slab having \(\varepsilon_r = 5\) in a parallel-plate waveguide. An undesired as well as an desired eigenmode are included in Fig. 1b and 1c respectively. The lateral boundaries are modeled by a PML.

![Fig. 1. a) Model of dielectric square having \(\varepsilon_r = 5\). b) Undesired eigenmode at 13.76 GHz. c) Structure eigenmode at 12.82 GHz.](image)

In Fig. 2 the loci of eigenvalues are plotted for different values of the linearization parameter \(s_{\text{est}}\). It turns out that eigenvalues which are weakly dependent on \(s_{\text{est}}\) are those of structure eigenmodes (\(\otimes\)). For sensitivity analysis the frequency dependent system matrix is derived by \(s_{\text{est}}\).

Figure 3 shows the magnitude \(|\lambda'\|\) obtained by (6). Again small values belong to eigenmodes whose field distribution (cf. Fig. 1) is primarily concentrated within the structure (\(\otimes\)). Eigenmodes whose field distribution is contained within the PML show a magnitude of \(|\lambda'\|\) which is larger than zero. The absolute limits for decisions on \(|\lambda'\|\) are the topic for further investigations.

![Fig. 2. Loci of eigenvalues \(\lambda\) for linearization parameters \(s_{\text{est}}\in [2\pi i \cdot 8 \text{ GHz}, 2\pi i \cdot 16 \text{ GHz}]\). Neglectable deviations of the data sets indicate eigenfrequencies with a field distribution within structure and low PML dependency (\(\otimes\)).](image)

![Fig. 3. Magnitude of the derivative \(|\lambda'\|\) over \(\Re\{\lambda\}\), linearized at \(s_{\text{est}} = 2\pi i \cdot 12.83 \text{ GHz}\). Small values indicate eigenmodes that are bound to the dielectric substructure (\(\otimes\)).](image)

5 Conclusion

We present a methodology which is able to decide which eigenmode belongs originally to the computational model and which is introduced by the perfectly matched layers absorbing boundary condition.

References

Summary. In this work, a numerical analysis method is introduced by combining the Multiple Multipole Program (MMP) and layered geometry Green’s functions. By the method, several difficulties in the analysis of photonic structures in layered geometries are eliminated and an efficient simulation tool is obtained that can analyze both 2D and 3D geometries.

1 Introduction

The advancements in the fabrication process of photonic structures, made various nano devices quite popular, including photonic crystals, chemical and bio sensors, optical antennas and waveguides [1]. Mostly, these photonic devices are fabricated in a multilayered structure. In the numerical analysis of such structures, the layers are often ignored for the sake of simplicity of simulations, which can cause substantial inaccuracies in the results. Especially for structures that support Surface Plasmon Polariton (SPP) or guided wave modes, the errors become so high that the computations become useless. In order to understand the physical phenomena related to layered geometries and to improve the efficiency of the devices, a numerical analysis tool that takes the layered geometries into account efficiently is needed. In this paper, a candidate for such a numerical tool is introduced by combining MMP and layered media Green’s functions.

2 The Method

Since the main idea of the method introduced, is to combine MMP and layered media Green’s functions, both of them will be discussed briefly below.

2.1 MMP

MMP is one of the most reliable and efficient computational tools for the analysis of plasmonic structures in frequency domain [2]. It is a semi-analytical, boundary discretization method that uses various analytic solutions of the Maxwell equations or so called expansions (e.g. plane waves, cylindrical waves, spherical waves, etc.) in order to approximate the fields scattered by the objects. In the MMP analysis, the electromagnetic field in domain i (F_i) can be written as a superposition of the fields generated by the expansions as:

$$ F_i = \sum_{n=1}^{N_i} A_n^i E_n^i + \text{error} \quad (1) $$

where E_n^i is the field generated by expansion n and A_n^i is the corresponding complex amplitude. The amplitudes are computed in such a way that the weighted residuals are minimized on the interfaces between different domains.

2.2 Layered media Green’s functions

The Green’s function describes the field generated by an infinitesimal source at a certain location. In free space, the Green’s function can be represented by closed form formulations (1D (an infinitely large plane is the source): plane wave, 2D (an infinitely long line is the source): cylindrical monopole waves, 3D (a point is the source): spherical dipole waves), which makes it easy and fast to use them as expansions in methods such as MMP or Method of Moments (MoM). In the case of a layered geometry, the Green’s functions can only be obtained by summing up all the plane waves that are generated at the location of the point source, for which the continuity conditions between different layers are fulfilled analytically. Since the spectrum of a point source is continuous (i.e. all the propagating and evanescent plane waves should be taken into account), the summation leads to an integral (Sommerfeld integral) with infinite bounds as follows (when the layers are stacked in y-direction and $e^{-i\omega t}$ is used):

$$ G(x,y,z) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dk_x dk_y e^{ik_x x} e^{ik_y y} \tilde{G}(k_x, k_y) \quad (2) $$

where $G(x,y,z)$ and $\tilde{G}(k_x, k_y)$ are the spatial and spectral domain Green’s functions for the given field component, respectively. In this calculation, the reflection and the transmission relations for the given plane wave are contained in the spectral domain Green’s function [3]. In general, the integrands of (2) are oscillatory and slowly decaying which makes the integration numerically expensive. This burden can be handled by using series acceleration techniques. In this work, the Aitken series and weighted averages methods are used in order to decrease the time needed for the integrations [4].

Equation (2) is the most general form of the Sommerfeld integral, which provides the Green’s function...
in 3D. One can obtain the Green’s function in 2D by (2), e.g., by taking the k_z value as a constant for a line source in z-direction. It is also possible to obtain the Green’s function of a complex origin source which generates beams by changing the integration paths, so that the integrands stay stable. This kind of expansions can be used to decrease the total number of expansions, especially for long structures compared to the wavelength.

By using layered media Green’s functions as an expansion set in MMP, one can decrease the complexity of the problems, since the continuity conditions on the layered geometry is fulfilled analytically [5]. In the next section, numerical examples will follow, demonstrating the efficiency of the method.

3 Numerical Examples

As the first example, a 2D triangle scatterer is placed in a four layered geometry. The result of the simulation, and the problem specifications are given in Fig. 1. For this simulation, a total of 76 expansions (38 for the field inside the scatterer (free space monopoles) and 38 for the field outside the scatterer (layered expansions)) are used, which makes the maximum relative error on the interface of the scatterer $\sim 0.1\%$. For this problem, since the incident field does not propagate in z-direction ($k_{z,\text{inc}} = 0$), the layered expansions are obtained by (2) with $k_z = 0$.

4 Conclusion

In this paper a numerical tool is introduced by combining layered media Green’s functions and MMP. As a result, an efficient tool is obtained that can solve the scattering problems in 2D and 3D geometries.

Acknowledgement. This work is supported by Swiss National Science Foundation under Project 200021 – 119813/1.

References

Stochastic Spectral Methods for Uncertainty Propagation in Numerical Models

Olivier P. Le Maître
LIMSI-CNRS, BP 133, F-91403 Orsay cedex, France olm@limsi.fr

Summary. This talk reviews the stochastic spectral methods for the propagation of parametric uncertainties in a numerical model. The alternative non-intrusive and Galerkin methods for the definition of the spectral expansion of an uncertain model output are introduced, and associated computational strategies are discussed. Examples are shown to highlight the interest of these methods and recent developments.

1 Content

The constant development of numerical methods and computational resources allow the simulation of more and more complex systems with ever increasing accuracy. As a result, numerical simulations are today widely used, in both academia and industry, to study phenomena and systems that would be hardly, or costly, investigated by means of experimental approaches. However, modeling improvements often raise the necessity to provide a more complete and accurate information regarding the input-data of the simulation (boundary and initial conditions, geometry, external forcing, material properties, model constants, ...). In many situations, the information needed is unfortunately subjected to uncertainty, either because of an inherent variability of the system studied or due to issues in identifying the values of the parameters involved in the model. Therefore, it is critical to assess the impact of such model input uncertainties on the numerical predictions.

Classically, the propagation of uncertainties in a numerical model is treated in a probabilistic framework, where the input-data are regarded as random quantities with prescribed probability law, leading to the problem of characterizing the random model output or solution. This can be achieved for instance by means of simulation approaches (e.g. Monte Carlo methods), where one samples the input to generate a sample set of output that serves subsequent analysis (moments estimation, reconstruction of probability density functions, sensitivity analysis, ...). Such approaches are robust and present the advantage of reusing deterministic simulation tools, but they can be computationally very expensive when the resolution of the model is costly.

In this talk, I will review stochastic spectral methods [1], where the uncertain model solution is seen as a functional of the random input. Owing to the introduction of a suitable functional basis spanning the random input space, the objective is then to approximate the model output as convergent Fourier-like series. Compared to the simulation approaches, stochastic spectral methods aim at exploiting the (usually) smooth dependence of the model solution with respect to the input, in order to reduce the computational complexity (spectral convergence rate), while the functional representation greatly facilitate the analysis of the solution’s variance to separate for instance the respective impact of different source of uncertainty. The determination of the series amounts to the computation of a set of deterministic coefficients representing the coordinates of the random solution in the stochastic basis. Two classes of methods can be used for the computation of these coefficients. Non-intrusive (NI) methods use a sample set of deterministic simulations to compute the coefficients, by solving a problem that depends on the selected definition of the sought approximation (projection, interpolation, least square residual or Bayesian inference). Alternative to the NI methods, the stochastic Galerkin methods uses the random model equations to reformulate a problem for the series coefficients of its solution, with possibly the need for a significant adaptation of the solvers.

Examples of applications will be shown, for linear and nonlinear models, highlighting recent advances in stochastic spectral methods (in particular reduced basis methods and stochastic adaptivity) which aim at improving computational efficiency.

Acknowledgement. This work is supported by the French National Research Agency (ANR), grant ANR-2010-Blan-0904.

References

Robust time-domain source stepping for DC-solution of circuit equations

E. Jan W. ter Maten¹,², Theo G.J. Beelen³, Alex de Vries³, and Maikel van Beurden³

¹ Eindhoven University of Technology, Dept. Mathematics and Computer Science, CASA, P.O. Box 513, 5600 MB Eindhoven, the Netherlands, E.J.W.ter.Maten@tue.nl
² Chair of Applied Mathematics / Numerical Analysis, Fachbereich C, Bergische Universität Wuppertal, Gaußstraße 20, D-42119 Wuppertal, Germany, Jan.ter.Maten@math.uni-wuppertal.de
³ NXP Semiconductors, High Tech Campus 46, 5656 AE Eindhoven, the Netherlands, \{Theo.G.J.Beelen, Maikel.van.Beurden\}@nxp.com
⁴ NewHer Systems, Steenovenweg 5, 5708 HN Helmond, the Netherlands, AlexdeVries@gmail.com

Summary. Most analyses of circuit equations start with solving the steady-state (DC) solution. In several cases this can be very hard. We present a novel time domain source stepping procedure to obtain a DC solution of circuit equations. The source stepping procedure is automatically adaptive. Controlled sources can be elegantly dealt with. The method can easily be combined with existing pseudo-transient procedures. The method is robust and efficient.

1 Introduction

The circuit equations can be written as $\frac{d}{dt} \mathbf{q}(\mathbf{x}) + \mathbf{j}(\mathbf{x}) + \mathbf{s}(t, \mathbf{x}) = 0$.

Here $\mathbf{s}(t, \mathbf{x})$ represents the specifications of the sources. The unknown $\mathbf{x} = \mathbf{x}(t)$ consists of nodal voltages and of currents through voltage defined elements. We assume that $\mathbf{q}(0) = 0$, and $\mathbf{j}(0) = 0$.

The steady state solution, which is called DC-solution (Direct Current solution), \mathbf{x}_{DC}, satisfies

$$\mathbf{j}(\mathbf{x}_{\text{DC}}) + \mathbf{s}(0, \mathbf{x}_{\text{DC}}) = 0.$$ (2)

Usually, and already hinted by setting $t = 0$ in (1), the DC-solution provides the initial value for the transient problem (1). In general, the problem (2) is non-linear. How to solve this problem is the subject of this note. The importance of the DC-problem lies in the fact that the DC-solution is crucial as starting solution for a number of next analyses (transient analysis, AC analysis, Harmonic Balance analysis, Periodic Steady State analysis). In general, (1) forms a system of Differential-Algebraic Equations (DAEs). With $\mathbf{G} = \frac{\partial \mathbf{q}(\mathbf{x})}{\partial \mathbf{x}}_{\mathbf{x} = \mathbf{x}_{\text{DC}}}$ and $\mathbf{G} = \frac{\partial \mathbf{j}(\mathbf{x})}{\partial \mathbf{x}}_{\mathbf{x} = \mathbf{x}_{\text{DC}}}$, we assume that $\lambda \mathbf{G} + $ is non-singular for λ in some neighbourhood of 0 (may be excluding $\lambda = 0$). To solve the equations Newton’s method, or variants, may be applied [3,5,8], which can be combined with g_{min}-stepping, in which linear conductors g are placed parallel to the non-linear part inside each transistor (device). Iteratively $g < g_{\text{min}}$ after which the Newton counter is increased.

Another approach is Pseudo-Transient [2]. In Pseudo-Transient (PT) one can use relaxed tolerances for the Newton process and for the time step control procedure. Also this can be combined with g_{min}-stepping during each time step. In PT one has to provide a non-trivial initial solution. A new procedure is described in the next section. Other methods are: temperature stepping, source stepping (the sources are iteratively increased to their final value), homotopy methods, or optimization [1,4,7,9,12].

2 Time-domain Source Stepping

Usually, in Source Stepping one introduces a parameter λ and considers the problem

$$\mathbf{j}(\mathbf{x}(\lambda)) + \lambda \mathbf{s}(0, \mathbf{x}(\lambda)) = 0.$$ (3)

In this case it is assumed that for $\lambda = 0$ the problem (3) is easily solved so that in the end the original problem is solved. The same parameter λ is applied to all sources s in the circuit. In general, for each value of λ a nonlinear problem has to be solved.

We introduce a time-domain variant (SSPT) that offers an automatic continuation process, based on PT and adapting the transient stepsize and the λ stepsize at the same time.

We define a time $t = T$ at which we want to have solved the original DC-problem. We also introduce a time $T_\alpha = \alpha T$ (by default $\alpha = 0.5$) at which ordinary PT will start simulation using the sources as in the original DC-problem, i.e. using $\lambda = 1$ and where PT integrates from T_α to T', where $T' \leq T$ is the point where all transient effects have become negligible (see also Fig. 1).

On the interval $[0, T_\alpha]$, a special PT integration is performed with the function $\lambda(t) = t/T_\alpha$. Hence, at each time step, also the actual applied source values change. The interval $[0, T_\alpha]$ is the switch-on interval, the interval $[T_\alpha, T]$ is the interval to damp-out transient effects. On both intervals PT uses an automatic time step determination procedure. On the interval $[T_\alpha, T]$ an ordinary PT procedure is executed. Hence,
if, at some time point, the Newton iterative process does not converge, a re-integration will be done with a smaller stepsize. Recursion in controlled sources asks for a modification in (3). An expression for a controlled voltage source $E_1(0,1)$ may look like

$$V(E_1) = 5 + 4(E_1) + [6V(R_1) + 7I(E_2) + 12]^2$$ \hspace{0.5cm} (4)

It is controlled by the controlling “ev’s” (electrical variables) $I(E_1), V(R_1)$, and $I(E_2)$. We write the expression for the applied value $V(E_1)$ as

$$V(E_1) = \psi(\text{ev}_1, \text{ev}_2, \ldots, \text{ev}_n)$$ \hspace{0.5cm} (5)

As value during the source stepping at time t on $[0,T_{\alpha}]$ we propose to take

$$V(E_1) = \tilde{\psi}(\text{ev}_1, \ldots, \text{ev}_n), \quad \text{where}$$

$$\tilde{\psi}(\text{ev}_1, \ldots, \text{ev}_n) = \psi(\text{ev}_1, \ldots, \text{ev}_n) + (\lambda(t) - 1)\psi(0, \ldots, 0).$$ \hspace{0.5cm} (7)

Note that in (4), $\psi(0, \ldots, 0) = 149$. This value has to be calculated once. When in \[E_2\] is a controlled voltage source too, contributions to the Jacobian matrix are calculated by $\frac{\partial \psi}{\partial \text{ev}_i} = \frac{\partial \psi}{\partial \text{ev}_i} \frac{\partial \text{ev}_i}{\partial \text{ev}_j}$, which gives recursion. Note that λ does not occur in the matrix. Clearly, for $\lambda = 0$ the applied voltage is zero (assuming starting from the zero solution, which implies that all ev’s are zero), which makes the zero solution the exact solution. When $\lambda = 1$ the original voltage expression is used. Since our equations (1) are DAEs we remark that for all t the generated solution is consistent for the problem at hand. Because of the switch-on and the damp-out phase the process mimics a real physical process.

3 Results

We tested the SSPT on a set of difficult problems where parameters were swept (temperature, and statistics). The SSPT was always convergent (without needing g_{min}-iteration). It was 1-13 times faster than Newton-Raphson (that sometimes needed internal g_{min}-iteration). Normal PT was less robust than SSPT. Further improvements in the time-domain integrations, after starting with a proper x_{DC}, have been tuned to fault analysis [9].

References

High-Order Local Time-Stepping with Explicit Runge-Kutta Methods

Marcus J. Grote\(^1\), Michaela Mehlin\(^1\), and Teodora Mitkova\(^2\)

1 Institute of Mathematics, University of Basel, Rheinsprung 21, CH-4051 Basel marcus.grote@unibas.ch, michaela.mehlin@unibas.ch
2 Department of Mathematics, University of Fribourg, Chemin du Musée 23, CH-1700 Fribourg teodora.mitkova@unifr.ch

Summary. We propose explicit local time-stepping (LTS) schemes of high accuracy based either on classical or low-storage Runge-Kutta (RK) schemes for time dependent Maxwell’s equations. By using smaller time steps precisely where smaller elements in the mesh are located, these methods overcome the bottleneck caused by local mesh refinement in explicit time integrators.

1 FE Discretizations of Maxwell’s Equations

The evolution of a time-dependent electromagnetic field \(E(\mathbf{x}, t)\), \(H(\mathbf{x}, t)\) propagating through a linear isotropic medium is governed by Maxwell’s equations:

\[
\begin{align*}
\varepsilon \mathbf{E}_t &= \nabla \times \mathbf{H} - \sigma \mathbf{E} + \mathbf{j}, \\
\mu \mathbf{H}_t &= \nabla \times \mathbf{E}.
\end{align*}
\]

(1) (2)

Here the coefficients \(\mu\), \(\varepsilon\) and \(\sigma\) denote the relative magnetic permeability, the relative electric permittivity, and the conductivity of the medium, respectively. The source term \(\mathbf{j}\) corresponds to the applied current density.

We discretize (1)-(2) in space by using standard edge finite elements (FE) with mass lumping \([6]\) or a discontinuous Galerkin (DG) FE discretization \([4,5]\), while leaving time continuous. Either discretization leads to a system of ordinary differential equations with an essentially diagonal mass matrix. Thus, when combined with explicit time integration, the resulting fully discrete scheme of (1)-(2) will be truly explicit.

2 Runge-Kutta based LTS

Locally refined meshes impose severe stability constraints on explicit time-stepping methods for the numerical solution of (1)-(2). Local time-stepping methods overcome that bottleneck by using smaller time-steps precisely where the smallest elements in the mesh are located. In \([1,2]\), explicit second-order LTS integrators for transient wave motion were developed, which are based on the standard leap-frog scheme. In the absence of damping, i.e. \(\sigma = 0\), these time-stepping schemes, when combined with the modified equation approach, yield methods of arbitrarily high (even) order. By blending the leap-frog and the Crank-Nicolson methods, a second-order LTS scheme was also derived there for (damped) electromagnetic waves in conducting media, i.e. \(\sigma > 0\), yet this approach cannot be readily extended beyond order two. To achieve arbitrarily high accuracy in the presence of damping, while remaining fully explicit, explicit LTS methods for the scalar damped wave equation based on Adams-Bashforth multi-step schemes were derived in \([3]\).

Here we propose explicit LTS methods of high accuracy based either on explicit classical or low-storage Runge-Kutta (RK) schemes. In contrast to Adams-Bashforth methods, RK methods are one-step methods; hence, they do not require a starting procedure and easily accommodate adaptive time-step selection. Although, RK methods do require several further evaluations per time-step, that additional work is compensated by a less stringent CFL stability restriction.

Clearly, the idea of using different time-steps for different components in the context of ordinary differential equations is not new \([7]\). However, RK methods achieve higher accuracy not by extrapolating farther from the (known) past but instead by including further intermediate stages from the current time-step. Thus, for the numerical solution of partial differential equations, the derivation of high-order local time-stepping methods that are based on RK schemes, is generally more difficult.

3 Numerical Experiments

To illustrate the versatility of our approach, we consider the scalar damped wave equation

\[
\begin{align*}
\partial_t u_t + \sigma \partial_t u - \nabla \cdot (c^2 \nabla u) &= f & \text{in } & \Omega \times (0, T),
\end{align*}
\]

(3)

in a rectangular domain of size \([0.2] \times [0.1]\) with two rectangular barriers inside forming a narrow gap. Here \(f(x,t)\) is a (known) source term, whereas the damping coefficient \(\sigma(x)\geq0\) and the speed of propagation \(c(x) > 0\) are piecewise smooth. We use continuous \(P^2\) elements on a triangular mesh, which is highly refined in the vicinity of the gap, as shown in Fig. \([1]\). For the time discretization, we choose an LTS
method based on an explicit third-order low-storage Runge-Kutta scheme. Since the typical mesh size inside the refined region is about $p = 7$ times smaller than that in the surrounding coarser region, we take p local time steps of size $\Delta \tau = \Delta t / p$ for every time step Δt. Thus, the numerical method is third-order accurate both in space and time with respect to the L^2-norm. In Fig. 2, a Gaussian pulse initiates two plane waves, which propagate horizontally in opposite directions. As the right-moving wave impinges upon the obstacle, a small fraction of the wave penetrates the gap and generates multiple circular waves on both sides of the obstacle, which further interact with the wave field.

References

Body-fitting meshes for the Discontinuous Galerkin Method

J. Cui\(^1\), S. M. Schnepp\(^1\), and T. Weiland\(^1\),\(^2\)

\(^1\) Graduate School of Computational Engineering, Technische Universitaet Darmstadt, Dolivostrasse 15, 64293 Darmstadt, Germany, cui@gsc.tu-darmstadt.de, schnepp@gsc.tu-darmstadt.de
\(^2\) Institut fuer Theorie Elektromagnetischer Felder, Technische Universitaet Darmstadt, Schlossgartenstrasse 8, 64289 Darmstadt, Germany, thomas.weiland@temf.tu-darmstadt.de

Summary. A mesh scheme is developed to deal with curved boundaries of the geometry using quadrilateral elements for the Discontinuous Galerkin Method (DGM). To achieve this, we first generate the inner part of the mesh in a structured manner and connect it to the curved boundary with a so-called buffer layer. Elements in the buffer layer employ a high order mapping to fit the boundary. We demonstrate high order convergence rates with an electromagnetic problem in a cylindrical cavity. Furthermore, we show that the frequency spectrum, which is extracted from the time-domain signal is clean, i.e., no spurious modes are observed in any of the examples considered.

1 Introduction

The DGM is a high order numerical method. In order to maintain its high order accuracy in the presence of curved objects, boundaries (surfaces) of the geometries have to be described with high order accuracy as well. The study in [1] shows that meaningful high order accurate results can be obtained only if the curved boundaries are considered with high order geometric approximations. In [2] problems in a cylindrical cavity are solved by pushing the straight edges of elements onto the exact circular boundary.

Both implementations [1, 2] employ triangular meshes for the DGM and achieve high order convergence. We propose an alternative mesh scheme based on Cartesian grids. It generates quadrilateral meshes in a simple process for both, exact geometries and objects represented by Non-Uniform Rational B-Splines (NURBS). The scheme enjoys many advantages due to the ability of applying tensor product bases within quadrilateral elements (see e.g. [3, 4]).

2 Body-fitting mesh scheme

We generate a set of buffer elements in the gap between the exact curved boundary and the interior structured mesh as demonstrated in Fig. 1. Figure 2 (left) shows that if no buffer layer is applied, degenerated elements (marked with arrows) are likely to occur, which is guaranteed not to happen with the insertion of a buffer layer [5] (right). Figure 3 gives an example, where a mesh is generated fitting a geometry described by NURBS. For performing the local element deformation in the buffer layer we apply Transfinite Interpolation (TFI) [6].

3 Solving electromagnetic problems

We consider transverse magnetic (TM) problems in a two-dimensional circular domain \(\Omega \) with the boundary \(\partial \Omega \). The Maxwell’s equations read as follows:

Fig. 1: Buffer layer mesh scheme based on a 3-by-3 regular mesh.

Fig. 2: Curved elements of 2nd order without (left) and with (right) buffer layer scheme based on a 9-by-9 regular mesh.

Fig. 3: Buffer layer mesh with NURBS. The approximation can be exact for both a circle (left half) and an arbitrary curve (right half) using control points.
\[
\begin{align*}
\frac{\partial H_x}{\partial t} &= -\frac{\partial E_z}{\partial y}, & \frac{\partial H_y}{\partial t} &= \frac{\partial E_z}{\partial x}, \\
\frac{\partial E_z}{\partial t} &= \frac{\partial H_x}{\partial x} - \frac{\partial H_y}{\partial y},
\end{align*}
\]

where \(H_x \) and \(H_y \) are the \(x \)- and \(y \)-components of the magnetic field vector, and \(E_z \) the \(z \)-component of the electric field vector. The parameters \(\varepsilon \) and \(\mu \) are the electric permittivity and the magnetic permeability, respectively.

In this DGM approach, Legendre polynomials are applied as basis functions and the explicit leap-frog scheme is used for the time discretization [4]. The TM31 mode in a cylindrical cavity is chosen for a convergence study. The errors are measured in the \(L^2 \) norm at the end of one periodic oscillation.

Figure 4 shows that the optimal convergence of \((p+1)\) is achieved where \(p \) is the polynomial order. We also extracted eigenfrequencies via a Fourier Transform. The results in Fig. 5 were obtained using central fluxes and 32 elements of 6\(^{th}\) order. The eigenfrequencies obtained from the time-domain solution agree with the analytical ones for frequencies up to 0.8 GHz. Above this frequency the spatial resolution is insufficient leading to errors.

4 Conclusions

A body-fitting mesh scheme employing high order curved elements with the DG method is proposed. High order convergence rates in the presence of curved objects are observed. Furthermore, we extracted frequency spectra from simulations of a cylindrical cavity and found the agreement between the numerical results and the respective analytical solutions, i.e., clean spectra are obtained.

Acknowledgement. The work of J. Cui and S. M. Schnupp is supported by the ‘Initiative for Excellence’ of the German Federal and State Governments and the Graduate School of Computational Engineering at Technische Universitaet Darmstadt.

References

Robust transmission conditions of high order for thin conducting sheets

Kersten Schmidt\(^1\) and Alexey Chernov\(^2\)

\(^1\) TU Berlin, DFG research center MATHEON, 10623 Berlin, Germany kersten.schmidt@math.tu-berlin.de
\(^2\) Hausdorff Center for Mathematics, University of Bonn, 53115 Bonn, Germany chernov@hcm.uni-bonn.de

Summary. Resolving thin conducting sheets for shielding or even skin layers inside by the mesh of numerical methods like the finite element method (FEM) can be avoided by using impedance transmission conditions (ITCs). Those ITCs shall provide an accurate approximation for small sheet thicknesses, where the accuracy is best possible independent of the conductivity or the frequency being small or large – this we will call robustness. We investigate the accuracy and robustness of popular\(^[1][2]\) and recently developed ITCs\(^[3]\), and propose robust ITCs which are accurate up to \(O(d^n)\).

1 Introduction

Thin conducting sheets for the protection of electronic devices exhibit large ratios of characteristic lengths which require a small mesh size when using finite difference or finite element schemes. Besides this issue of computational cost due to the small geometry details, many commercial mesh generators get difficulties with anisotropic geometrical features.

The shielding behaviour can be modelled alternatively by replacing the thin sheet by an interface on which impedance transmission conditions are set.

We consider the time-harmonic eddy current model (convention \(\exp(-i\omega t)\), \(\omega > 0\)) in two dimensions

\[
\begin{align*}
\text{curl}_{2D} e(x) &= i\omega\mu_0 h(x), \\
\text{curl}_{2D} h(x) &= \sigma e(x) + j_0(x)
\end{align*}
\]

where \(e\) and \(h\) are the out-of-plane electric and in-plane magnetic fields, \(\sigma\) is the conductivity of the thin sheet of thickness \(d\) and zero elsewhere, and \(j_0\) is the out-of-plane imposed current which is outside the conductor. We have used the 2D rotation operators \(\text{curl}_{2D} = (\partial_y, -\partial_x)^\top\) and \(\text{curl}_{2D} = (-\partial_y, \partial_x)^\top\). The skin depth inside the conductor is \(\delta = \sqrt{2/\omega\mu_0\sigma}\).

Fig. 1. Impedance transmission conditions are set on the mid-line \(\Gamma\) of the sheet and shall approximate the exact field outside the area the sheet was originally located.

2 Thin sheet and limit conditions

2.1 Thin sheet transmission conditions

With \(\beta = i\omega\mu_0\) and \(\gamma = \sqrt{-\omega\mu_0\sigma}\) the impedance transmission conditions by Krähenbühl and Muller\(^[1]\) and Mayergoyz and Bedrosian\(^[2]\) are given by

\[
\begin{align*}
e_{KM}^+ - e_{KM}^- &= \frac{\beta}{\gamma} \tanh\left(\frac{\beta d}{\gamma}\right) (h_{KM}^+ \cdot n + h_{KM}^- \cdot n) , \\
h_{KM}^+ \cdot n^+ - h_{KM}^- \cdot n^- &= \frac{\beta}{\gamma} \tanh\left(\frac{\beta d}{\gamma}\right) (e_{KM}^+ + e_{KM}^-)
\end{align*}
\]

which are set on the mid-line \(\Gamma\) of the sheet. Here, the subscript KM denotes the approximative electric and magnetic field, the superscript \(\pm\) and \(\perp\) denotes the values on the two sides of the sheet, and \(n = (n_1, n_2)^\top\) are the normalised normal and tangential vectors on \(\Gamma\) like shown in Fig. 1.

2.2 The limit of vanishing thickness

Impedance transmission conditions are developed for thin sheets and their accuracy shall be larger the thinner the sheet. We observe three different limits for vanishing sheet thickness \((d \to 0)\):

1. The conductivity \(\sigma\) is remained or is increased less than 1/d. Then, we have twofold continuity

\[
\begin{align*}
e_0^+ - e_0^- &= 0, \\
h_0^+ \cdot n^+ - h_0^- \cdot n^- &= 0.
\end{align*}
\]

The limit corresponds to the low-frequency eddy current limit \(\delta \to \infty\).

2. The conductivity \(\sigma\) increases like 1/d, where we get the non-trivial limit conditions\(^[3]\)

\[
\begin{align*}
e_1^+ - e_1^- &= 0, \\
h_1^+ \cdot n^+ - h_1^- \cdot n^- &= \frac{\alpha d}{\gamma} (e_1^+ + e_1^-).
\end{align*}
\]

The limit corresponds to the low-frequency eddy current limit \(\delta \to \infty\) and equivalently to the high-frequency limit \(\delta \to 0\).

3. The conductivity \(\sigma\) increases like 1/d\(^2\), e. g., like 1/d\(^2\). Then, the electric field on both sides get zero in the limit \(d \to 0\),

\[
e_2^+ - e_2^- = 0, \\h_2^+ \cdot n^+ - h_2^- \cdot n^- = \frac{\alpha d^2}{\gamma} (e_2^+ + e_2^-).
\]

Here, the respective subscripts 0, 1 and 2 correspond to the scaling \(\sigma \sim 1/d^\alpha\) with \(\alpha = 0, 1, 2\).
The first order ITCs related to \(d \) is once scaled like 1 asymptotically constant skin depth – the conductivity once scaled like 1 (case the non-trivial limit conditions – the conductivity is

The second and third ITCs involve curvature terms

\[\delta \]

\(\alpha \)

\(\beta \)

\(\gamma \)

3 High order transmission conditions

In order to improve the accuracy we have studied an asymptotic expansion for \(d \to 0 \) where – motivated by the non-trivial limit conditions – the conductivity is once scaled like 1/d (case \(\alpha = 1 \)) and – motivated by asymptotically constant skin depth – the conductivity is once scaled like 1/d^2 (case \(\alpha = 2 \)).

3.1 Conductivity scaled like 1/d

The first order ITCs related to \(\alpha = 1 \) are given by [4]

\[e_{2,1}^\pm - e_{1,1}^\pm = 0, \]

\[h_{1,1}^\perp \mathbf{n}^\perp - h_{1,1}^\perp \mathbf{n}^\perp = \frac{4 \omega \mu_0 \sigma d^2}{r} (e_{1,1}^\perp + e_{1,1}^\perp). \]

The second and third ITCs involve curvature terms and second order tangential derivatives, see [4].

3.2 Conductivity scaled like 1/d^2

The first order ITCs related to \(\alpha = 2 \) are given by

\[e_{2,1}^\pm - e_{1,1}^\pm = \frac{\beta d}{r} \left(1 - \frac{\tanh(\frac{\beta d}{2})}{\tanh(\frac{\beta d}{2})} \right) (h_{2,1}^+ \cdot \mathbf{n} + h_{2,1}^- \cdot \mathbf{n}), \]

\[h_{2,1}^- \mathbf{n}^- - h_{2,1}^+ \mathbf{n}^+ = \frac{\gamma}{r} \frac{\sinh(\frac{\beta d}{2})}{\cosh(\frac{\beta d}{2}) - \frac{\beta d}{r} \sinh(\frac{\beta d}{2})} (e_{2,1}^+ + e_{2,1}^-). \]

Additional terms will be present for curved sheets.

3.3 Discussion

Both proposed ITCs are robust and get improved accuracy in comparison to the non-trivial limit and the original thin sheet conditions. The accuracy for both ITCs is asymptotically like \(O(d^2) \). Especially, the \(\alpha = 2 \)-ITCs achieve accurate results even for larger sheet thicknesses. Since their expression has the same form as the original thin sheet conditions [5] they are preferable – for low and for high frequencies.

References

Efficient Convolution Based Impedance Boundary Conditions

Alberto Paganini

ETHZ, Rämistrasse 101, 8092 Zürich, Switzerland.

Summary. When formulating impedance boundary conditions in time domain, the Dirichlet-to-Neumann map of the interior of a good conductor involves convolutions. A. Schädle, M. López-Fernández and C. Lubich have developed a fast and memory efficient algorithm based on Runge-Kutta methods for computing convolutions when only the Laplace transform of the kernel is known. We investigate the coupling of FCQ with FEM for solving parabolic PDE with impedance boundary conditions involving convolutions.

1 Introduction

Alternating electromagnetic fields decay exponentially when penetrating a good conductor (skin effect). Therefore, a reasonable approximation of the electromagnetic Dirichlet-to-Neumann map of the interior of a good conductor is provided by the impedance boundary conditions

\[
\left(\text{curl} L(E)(s) \right) \times n = \frac{\sqrt{2 \mu \sigma s}}{(1-i)\sqrt{1}} \gamma_D L(E)(s),
\]

where \(L(E)(s) \) denotes the temporal Laplace transform of the electric field, \(s \) is a complex variable and \(\gamma_D \) is the tangential Dirichlet trace operator. The conductivity \(\sigma \) and permeability \(\mu \) are known material parameters.

The relationship (1) is valid in the Laplace domain only. When formulating impedance boundary conditions in the time domain, we encounter temporal convolutions of the form

\[
\text{curl } E(x,t) \times n = \int_0^t k(\mu, \sigma, \tau - t) \gamma_D E(x, \tau) d\tau.
\]

2 Fast Convolution Quadrature

C. Lubich and A. Ostermann first introduced the Runge-Kutta convolution quadrature in [1]. Their algorithm requires only the knowledge of the Laplace transform \(K \) of the possibly weakly singular kernel and experiences excellent stability properties and high order of convergence.

Subsequently in [2] A. Schädle, M. López-Fernández and C. Lubich rearranged the computations and combined the convolution quadrature with the exponentially convergent approximation of the convolution weights along hyperbolae. They obtained a fast and memory efficient algorithm which virtually shares the convergence and stability properties of the convolution quadrature. Table 1 compares the complexity of a naive implementation of the convolution quadrature with the reduced complexity of the FCQ.

<table>
<thead>
<tr>
<th></th>
<th>CQ</th>
<th>FCQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>multiplications</td>
<td>(O(n^2))</td>
<td>(O(n \log n))</td>
</tr>
<tr>
<td>evaluations of (K)</td>
<td>(O(n))</td>
<td>(O(\log n))</td>
</tr>
<tr>
<td>active memory</td>
<td>(O(n))</td>
<td>(O(\log n))</td>
</tr>
</tbody>
</table>

3 FEM-FCQ Coupling

We have investigated the coupling of the FEM and the FCQ for solving the exterior eddy current problem. The algorithm benefits from the computational efficiency of the FCQ and seems to inherit the good convergence and stability properties which both the FEM and the FCQ supply.

For example we have combined the linear Lagrangian FEM on a triangular mesh with nodal basis functions with the RadauIIA based FCQ for solving the eddy current problem, after assuming a translation symmetry of the model and the TE-mode. We have observed that both the maximal order of convergence in space of FEM and the maximal order of convergence in time of FCQ have been achieved.

References

Summary. Streamers occur prior to breakdown in electrical insulation and understanding streamers is important in order to optimize insulation design. In earlier works a model that describes streamers in transformer oil has been developed and implemented in a finite element simulation tool. In this paper the consequences of changing simulation method to the finite volume method is investigated and the simulation is extended from 2D axial symmetry to 3D.

1 Introduction

When electricity is transmitted over large distances in a power grid high voltages are required to limit the ohmic losses. High voltage puts a number of demands on electrical equipment in particular the electric insulation. For power transformers the insulation systems usually consists of mineral oil and high density cellulose. The primary mode of failure is an electric arc though the oil, which normally destroys the transformer.

Before an electric arc is formed a pre-breakdown event called a streamer occurs. The streamer is an ionizing wave traveling rapidly through the oil. The wave starts when the oil gets highly stress causing excessive build up of charge, which in turn affects the electric field leading to a high electric field region nearby. The strong electric field causes additional ionization and the wave propagates.

2 The Streamer Model

Researchers at Massachusetts Institute of Technology (MIT) have together with ABB Corporate Research developed a model for describing streamers in transformer oil [2–5]. The model consists of ion and electron transport equations coupled with Poisson’s equation. The ions and electrons are produced through a field dependent ionization term based on the Zener model for electron tunneling.

3 Numerical Methods

The streamer simulations at MIT have been done using Comsol Multiphysics, which is a computational tool based on the finite element method (FEM). Although Comsol is a powerful tool with a large number of applications, it has its limitations when computing convectively dominated flow, which is the main part of the streamer model. To be able to run the simulation various artificial diffusion techniques needs to be applied to stabilize the solutions.

A preferred method for convection dominated problems is the finite volume method (FVM). When implementing the MIT model in FVM OpenFOAM was chosen due to its flexibility and open structure. Moving to FVM also make the simulations more efficient, which allows larger problems to be treated.

4 Results

The MIT model was implemented in OpenFOAM at ABB and has been tested as part of the master thesis by Jonathan Fors [1]. The geometry simulated is a needle-sphere geometry, which is a standard geometry for testing the breakdown strength of insulating liquids.

The new solver is checked against a selection of MIT results [2]. These test cases are all 2D axisymmetric and include different model parameters and voltages. Most cases give quite similar results, but some differences are seen which are attributed to more stable numerics in the OpenFOAM solver.

The new solver has also been applied to a 3D version of the same needle-sphere geometry. The heavy computational load means that techniques for efficient meshing need to be used.

References

Wednesday, September 12
Phase Models and Phase Computations for Oscillators

Alper Demir and Önder Şuvak

Koç University, Istanbul, Turkey aldemir@ku.edu.tr, osuvak@ku.edu.tr

Summary. Oscillators have been a research focus in many disciplines such as electronics and biology. The time keeping capability of oscillators is best described by the scalar quantity called phase. Phase computations and equations describing phase dynamics have been useful in understanding oscillator behavior and designing oscillators least affected by disturbances such as noise. In this talk, we present a unified review of phase models for oscillators assimilating the work that has been done in electronics and biology for the last seven decades.

Oscillatory behavior is seen in physical and man-made systems, where their time keeping ability is important. Oscillators are particularly encountered in or introduced into biological and electronic systems where the adverse effects of disturbances such as noise degrade their time keeping and synchronization capability.

The dynamical behavior of oscillators is best described and analyzed in terms of the scalar quantity, phase. Of the pertaining notions in the literature, the most straightforward phase definition is obtained when a planar oscillator is expressed in polar coordinates, with amplitude and polar angle as the state variables. The usefulness of the polar angle as phase does not generalize to higher dimensional oscillators. In the general case, it is our conviction that the most rigorous and precise definition of phase is the one based on the so-called isochrons of an oscillator [1–4]. The notion of isochrons was first proposed by Arthur Winfree [1] in 1974, who has also coined the term. It was later revealed that isochrons are intimately related to the notion of asymptotic phase in the theory of differential equations [5,6]. The isochron theoretic phase of a free-running oscillator is simply time itself. Such an unperturbed oscillator serves as a perfect time keeper if it is in the process of converging to a limit cycle, even when it has not yet settled to a periodic steady-state solution. Perturbations make the actual phase deviate from time, due to the degrading impact of disturbances on the time keeping ability.

Phase is a quantity that compactly describes the dynamical behavior of an oscillator. One is then interested in computing the phase of a perturbed oscillator. If this can be done in a semi or fully analytical manner for a practical oscillator, one can draw conclusions and obtain useful characterizations in assessing the time keeping performance. Indeed, we observe in the literature that, in various disciplines, researchers have derived phase equations that compactly describe the dynamics of weakly perturbed oscillators [2,7]. It appears that a phase equation for oscillators has first been derived by Malkin [8] in his work on the reduction of weakly perturbed oscillators to their phase models [2], and the same equation has been subsequently reinvented by various other researchers in several disciplines [1,9]. This phase equation has been used in mathematical biology to study circadian rhythms and coupled oscillators in models of neurological systems [1,2,10], and in electronics for the analysis of phase noise and timing jitter in oscillators [7,12]. The acclaimed phase equation is a non-linear but scalar differential equation. As such, it is the ultimate reduced-order model for a complex non-linear dynamical system. Its scalar nature and the specific form of the nonlinearity in this equation makes it possible in some cases to solve, or characterize the solutions of, this equation in (semi) analytical form, e.g., in the investigation of synchronization of coupled oscillators [2,9] and in characterizing phase noise in electronic oscillators with stochastic perturbations as models of electronic noise sources [7,13].

In this talk, we present a unified review of phase models for autonomous oscillators assimilating the work that has been done on oscillator analysis in both electronics and mathematical biology during the past seventy years. We first review the notion of isochrons, which forms the basis for the generalized phase notion for an oscillator. We then present an overview of techniques for computing local approximations for the isochrons of an oscillator [4,14]. Next, we describe phase models and phase computation schemes based on local approximations of isochrons, for continuous periodic (single-frequency) oscillators [15], continuous quasi-periodic (multi-frequency) oscillators [16], as well as for discrete molecular oscillators [17].

Acknowledgement. This work was financially supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK).
References

Optimal frequency sweep method in multi-rate circuit simulation

Kai Bittner1 and Hans-Georg Brachtendorf1

University of Applied Sciences Upper Austria, Softwarepark 11, 4232 Hagenberg, Austria
Kai.Bittner@fh-hagenberg.at, Hans-Georg.Brachtendorf@fh-hagenberg.at

Summary. We present a new approach for the computation of a not a-priori known, time-varying frequencies in a multi-rate circuit simulation. Typical examples are the start-up simulation of oscillators, or circuits with frequency modulation. The method is based on the optimization of the smoothness of the multi-rate solution, which is in turn essential for the efficiency of the computation.

1 Introduction

Widely separated time-scales occur in many radio-frequency (RF) circuits such as mixers, oscillators, PLLs, etc., making the analysis with standard numerical methods difficult and costly. Low frequency or baseband signals and high frequency carrier signals often occur in the same circuit, enforcing very small time-steps over a long time-period for the numerical solution, which results in prohibitively long run-times.

A method to circumvent this bottleneck is to reformulate the ordinary circuit DAEs as a system of partial DAEs (multi-rate PDAE). The method was first presented in [5] for the computation of steady states. The technique was adapted to the transient simulation of driven circuits with a-priori known frequencies in [7,9]. A generalization for circuits with a-priori unknown or time-varying frequencies was developed in [3,4,6].

Here, we present a new approach for the computation of a not a-priori known, time-varying frequency, which is driven by the requirement to have a smooth multi-rate solution, crucial for the efficiency of the computation.

2 The multi-rate circuit simulation problem

We consider circuit equations in the charge/flux oriented modified nodal analysis (MNA) formulation, which yields a mathematical model in the form of a system of differential-algebraic equations (DAEs):

\[\frac{d}{dt} q(x(t)) + g(x(t)) = s(t). \] (1)

To separate different time scales the problem is reformulated as a multi-rate PDAE, i.e.,

\[\left(\frac{d}{dt} + \omega(t) \frac{d}{d\tau} \right) q(\hat{x}(\tau,t)) + g(\hat{x}(\tau,t)) = \hat{s}(\tau,t). \] (2)

If the new source term is chosen, such that \(s_\theta(t) = \hat{s}(t, \Omega_\theta(t)) \), where \(\Omega_\theta(t) = \theta + \int_0^t \omega(s) ds \), then a solution \(\hat{x}(\tau,t) \) determines a family \(\{ x_\theta : \theta \in \mathbb{R} \} \) of solutions for

\[\frac{d}{dt} q(x(t)) + g(x(t)) = s_\theta(t), \] (3)

by \(x_\theta(t) = \hat{x}(t, \Omega_\theta(t)) \).

Although the formulation (2) is valid for any circuit, it offers a more efficient solution only for certain types of problems. This is the case if \(\hat{x}(\tau,t) \) is periodic in \(t \) and smooth with respect to \(\tau \). In the sequel we will consider (2) with periodicity conditions in \(t \), i.e., \(\hat{x}(\tau,t) = \hat{x}(\tau, t + P) \) and suitable initial conditions \(\hat{x}(0,t) = X_0(t) \). Here \(P \) is an arbitrary but fixed period length.

3 Meaning and suitable choice of \(\omega(\tau) \)

Note that \(\omega(\tau) \) can, with a corresponding choice of \(\hat{s}(\tau,t) \), be chosen arbitrarily. This freedom may be used to facilitate an efficient numerical solution of (2). The smoothness of \(\hat{x}(\tau,t) \) is essential for the efficiency of classical solvers. Therefore, we require

\[\int_\tau^{\tau+T} \int_0^P \left| \frac{d}{d\tau} \hat{x}(\tau,t) \right|^2 dt d\tau \rightarrow \min. \] (4)

in order to determine \(\alpha(\tau) \). For frequency modulated oscillations one obtains indeed the instantaneous frequency as \(\frac{\omega(t)}{P} \), while \(\hat{s}(\tau,t) \) is constant with respect to \(\tau \). For some examples a (nearly) optimal \(\alpha(\tau) \) might be known in advance, while in other case (e.g. start-up of an oscillator) it might be necessary to determine \(\alpha(\tau) \) during the simulation, by enforcing the smoothness condition (4).

4 Discretization

We discretize (2) with respect to \(\tau \) by a Rothe method using a linear multi step method (e.g. Gear’s BDF or the trapezoidal rule). This results in a periodic boundary value problem in \(t \) of the form
\[\omega_k \frac{d^2}{dt^2} q_k (X_k(t)) + f_k (X_k, t) = 0, \]

\[X_k(t) = X_k(t + P), \]

where \(X_k(t) \) is the approximation of \(\hat{x}(\tau_k, t) \) for the \(k \)-th time step \(\tau_k \), while \(\omega_k \) is an approximation of \(\omega(\tau_k) \). An optimal \(\omega_k \) is determined with the condition

\[\int_0^P |X_k(t) - X_{k-1}(t)|^2 \, dt \rightarrow \text{min}, \]

which is a good approximation of condition [4].

The periodic problem [5] can be solved by a collocation or Galerkin method, where \(X_k(t) \) is expanded in a periodic basis \(\{ \phi_k \} \) (as a Fourier, B-spline, or wavelet basis) and tested at collocation points or integrated against test functions, respectively. This leads to a nonlinear system of equations for the coefficients \(c_{k, \ell} \) of the basis expansion \(X_k(t) = \sum c_{k, \ell} \phi_k(t) \). Here, the condition (6) is replaced by the condition

\[\sum_k \| c_{k, \ell} - c_{k-1, \ell} \|_2^2 \rightarrow \text{min}. \]

5 Example: A Phase Locked Loop

The method has been tested on our method on several circuits. To solve the periodic problem we have used an adaptive spline wavelet method described in [1, 2]. We show results from the multi-rate simulation of a Phase Locked Loop (PLL) with a frequency modulated input signal. Both the frequency parameter \(\omega(\tau) \) (Fig. 1) determined by our method, and the control signal of the oscillator (Fig. 2) reflect perfectly the instantaneous frequency. The feedback signal in Fig. 3 shows that the computed \(\omega(\tau) \) leads indeed to optimal smoothness.

\[\omega_k \frac{d^2}{dt^2} q_k (X_k(t)) + f_k (X_k, t) = 0, \]

\[X_k(t) = X_k(t + P), \]

5 Example: A Phase Locked Loop

The method has been tested on our method on several circuits. To solve the periodic problem we have used an adaptive spline wavelet method described in [1, 2]. We show results from the multi-rate simulation of a Phase Locked Loop (PLL) with a frequency modulated input signal. Both the frequency parameter \(\omega(\tau) \) (Fig. 1) determined by our method, and the control signal of the oscillator (Fig. 2) reflect perfectly the instantaneous frequency. The feedback signal in Fig. 3 shows that the computed \(\omega(\tau) \) leads indeed to optimal smoothness.

Acknowledgement. This work was funded partly by the Austrian Science Fund (FWF): P22549-N18, and the project ARTEMOS No. 270683-2, by the FFG Austria and the ENIAC Joint Undertaking.

References

Polynomial Fitting of Nonlinear Sources with Correlating Inputs

Janne P. Aikio¹, Timo Rahkonen¹, Ville Karanko²

¹ Department of Electrical Engineering, Electronics Laboratory, P.O. Box 4500 90014 University of Oulu, Finland
² AWR-APLAC Corporation, Lars Sonckin kaari 10, FI-02600 Espoo, Finland.

Summary. This paper proposes methods to improve the LSE polynomial fitting of bivariate nonlinear VCCS sources for distortion contribution analysis. The main problem in fitting is usually the fact that the input signals correlate strongly. It is shown that the correlation can be reduced by perturbing the input signals, which highly improves the quality of the fit. The ways to recognize a bad fit are discussed and the comparison between general, Chebychev and perturbed polynomial is performed.

1 Introduction

Volterra analysis is a powerful tool for finding the contributions of nonlinear distortion [1],[2]. However, it relies on the use of polynomial models that are usually not available. Volterra models are mostly built using high-order derivatives of the I-V and Q-V functions, but a polynomial model fitted using existing DC or AC I-V data is certain to converge over the data range. However, the fitting suffers from ill-conditioning resulting in non-physical coefficients. This paper illustrates heuristic methods how to recognise a bad fit, and ways to prevent it. We will propose a method that guarantees a physically meaningful fitted polynomial models that are that converge over the required signal range.

Here we utilize the frequency domain polynomial fitting [3] using large-signal voltage and current spectra of each nonlinear VCCS obtained from HB simulation. Hence, we can monitor the quality of the fitting of each VCCS individually and improve the fitting of those sources that suffer from a bad fit. The \(I_{DS} - V_{GS} - V_{DS} \) current source of a MOS transistor [4] is used as an example. Its frequency domain polynomial can be written as

\[
I_{DS}(f) = K_{00} + K_{10} \cdot V_{10}(f) + K_{20} \cdot V_{20}(f) + K_{30} \cdot V_{30}(f) + K_{40} \cdot V_{40}(f) + K_{50} \cdot V_{50}(f) + K_{01} \cdot V_{01}(f) + K_{02} \cdot V_{02}(f) + K_{03} \cdot V_{03}(f) + K_{04} \cdot V_{04}(f) + K_{05} \cdot V_{05}(f) + K_{11} \cdot V_{11}(f) + K_{12} \cdot V_{12}(f) + K_{13} \cdot V_{13}(f) + K_{14} \cdot V_{14}(f) + K_{15} \cdot V_{15}(f) + K_{21} \cdot V_{21}(f) + K_{22} \cdot V_{22}(f) + K_{23} \cdot V_{23}(f) + K_{24} \cdot V_{24}(f) + K_{25} \cdot V_{25}(f) + K_{31} \cdot V_{31}(f) + K_{32} \cdot V_{32}(f) + K_{33} \cdot V_{33}(f) + K_{34} \cdot V_{34}(f) + K_{35} \cdot V_{35}(f) + K_{41} \cdot V_{41}(f) + K_{42} \cdot V_{42}(f) + K_{43} \cdot V_{43}(f) + K_{44} \cdot V_{44}(f) + K_{45} \cdot V_{45}(f) + K_{51} \cdot V_{51}(f) + K_{52} \cdot V_{52}(f) + K_{53} \cdot V_{53}(f) + K_{54} \cdot V_{54}(f) + K_{55} \cdot V_{55}(f)
\]

where \(V_{ij}(f) \) means the spectrum of a product term \(v_{ij}v_{DS} \), e.g. \(V_{30}(f) \) are obtained by convolving \(V_{10}(f) \) twice with itself. Controlling voltages \(V_{GS} \) and \(V_{DS} \) often correlate rather strongly, and this easily causes excessively strong \(V_{DS} \)-related product terms in the polynomial on lines 3 and 4 in (1).

2 Ways to Recognize a Bad Fit

The LSE fitting [5] tries to match the output current spectrum as accurately as possible, which is relatively easy to achieve. However, the model may still show excessive curvature outside the data range and does not make sense physically. In order to monitor the quality of the fit, we can calculate the estimated variance for fitted parameters [5]. This easily calculated numerical measure shows if the result is uncertain and has a risk. The condition number \(\text{cond} \) calculated from the singular values of the model matrix \(M \) in \(y = Mc, c = (M'M)^{-1}(M'y) \) gives similar indication [5]. If \(\text{cond}(M) \) is high, the model functions in \(M \) most probably correlate. Visually the quality of the fit can be illustrated by the model’s capability to imitate the I-V shape of the original transistor. In Fig. 1 the I-V-curves of the original model are plotted on top of a narrow \(I_{DS} \)-\(V_{DS} \) swing (black) caused by the strongly correlating \(V_{GS} \) and \(V_{DS} \). The general frequency domain polynomial (thick line) that is fitted using the narrow data range show excessive curvature outside the data trajectory, which implies that the model - though accurate - is non-physical.

3 Methods to Improve the Fitting

Several approaches have been proposed to guarantee that the fitted polynomial is physically meaningful. One is to reduce the order of the model (especially of \(V_{DS} \)-related terms). This helps, but also limits the usability of the model in highly nonlinear applications. Another method is to apply orthogonal series expansion like Chebychev series to reduce the correlation between odd and even degree terms. This works rather well with a multitone spectra, too: if the DC content is eliminated in the signals to be multiplied, the original frequency components will be attenuated in the resulting higher-order spectrum. The effect of this is shown in Fig. 2, in which the increase of \(\text{cond}(M) \) between different order spectra \(V_{ij}(f) \) is shown. It can be seen that condition number of the terms in Chebychev polynomial is indeed lower up to \(V_{30} \) but then increases above the general polynomial. In fact, a Chebychev polynomial can not break the correla-
tion between V_{GS} and V_{DS}, which is the main problem in the 2-D fitting. By fitting the V_{GS} and V_{DS} related polynomial terms in two phases (V_{GS} first, then V_{DS}), helps a little. One could also use the partial derivatives of I_{DS} to aid the fitting, as is often done in fitting DC models. However, that does not break the V_{GS}-V_{DS} correlation, either.

The obvious solution in breaking V_{GS}-V_{DS} correlation is to perturb either one of them [6]. This means that the data used for fitting is different from the one used for distortion contribution analysis, and we need to maintain the same peak amplitudes of the control signals. Also, two simulations are needed: one for fitting the models, and one for the real signals for the contribution analysis. This is implemented so that only the hard-to-fit I-V or Q-V sources are recognized, and fitted in a separate HB simulation loop where only that specific source is simulated and refitted. It can be seen in Fig. 2 that when a half the amplitude of the f_1 tone ($900\, \text{mV} \angle 45^\circ$) is added to the f_2-f_1 of V_{DS}, the cond(M) (especially cross-products) are highly reduced.

![Fig. 1 $I_{DS} - V_{DS}$ voltage swings with IV curves.](image)

The IV-curves of this polynomial can be seen in Fig. 1 (X marker) and it behaves surprisingly well. The perturbation causes now wider data trajectory (grey) indicating lower correlation between V_{GS} and V_{DS}. With less correlating data it is possible to fit a frequency domain polynomial that is accurate and able to imitate the shape of the actual IV-curves. In fact, this polynomial is more accurate than the IV-fitted polynomial (marker) based on the actual DC curves.

To observe the results further the Table 1 shows the coefficients of three different frequency domain polynomials and their reliability. The higher the reliability figure the smaller the deviation. It can be seen that the perturbation definitely increases the reliability of all terms, especially in the higher order terms and cross products.

![Fig. 2 Increase of the cond(M) term by term.](image)

Table 1: Coefficients and the reliability of general (C_1), Chebychev (C_2) and perturbed (C_3) polynomial.

<table>
<thead>
<tr>
<th>Terms</th>
<th>DC</th>
<th>V_{10}</th>
<th>V_{20}</th>
<th>V_{30}</th>
<th>V_{40}</th>
<th>V_{50}</th>
<th>V_{90}</th>
<th>V_{101}</th>
<th>V_{102}</th>
<th>V_{103}</th>
<th>V_{11}</th>
<th>V_{21}</th>
<th>V_{12}</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>0.33</td>
<td>1.29</td>
<td>1.78</td>
<td>0.35</td>
<td>-0.98</td>
<td>-0.25</td>
<td>2.3m</td>
<td>160u</td>
<td>20u</td>
<td>10.8m</td>
<td>8.9m</td>
<td>290u</td>
<td></td>
</tr>
<tr>
<td>C_1/σ_1</td>
<td>6310</td>
<td>2080</td>
<td>166</td>
<td>13</td>
<td>155</td>
<td>77</td>
<td>33</td>
<td>1.1</td>
<td>0.4</td>
<td>4.3</td>
<td>0.9</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>C_2</td>
<td>0.870</td>
<td>1.32</td>
<td>0.80</td>
<td>72.6m</td>
<td>-0.12</td>
<td>-15m</td>
<td>2.5m</td>
<td>80u</td>
<td>10u</td>
<td>10.8m</td>
<td>8.8m</td>
<td>290u</td>
<td></td>
</tr>
<tr>
<td>C_2/σ_2</td>
<td>319</td>
<td>384</td>
<td>148</td>
<td>105</td>
<td>154</td>
<td>77</td>
<td>4.5</td>
<td>1.1</td>
<td>0.4</td>
<td>4.3</td>
<td>0.9</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>C_3</td>
<td>0.33</td>
<td>1.29</td>
<td>1.78</td>
<td>0.39</td>
<td>-0.99</td>
<td>-0.24</td>
<td>2.3m</td>
<td>140u</td>
<td>10u</td>
<td>10.5m</td>
<td>17m</td>
<td>640u</td>
<td></td>
</tr>
<tr>
<td>C_3/σ_3</td>
<td>7640</td>
<td>3650</td>
<td>1300</td>
<td>97</td>
<td>174</td>
<td>140</td>
<td>60</td>
<td>18.6</td>
<td>2.8</td>
<td>82.4</td>
<td>17.4</td>
<td>6.9</td>
<td></td>
</tr>
</tbody>
</table>

Acknowledgement. This work was supported by the Academy of Finland

References

Heat generation in silicon nanometric semiconductor devices

Orazio Muscato and Vincenza Di Stefano

Dipartimento di Matematica e Informatica, Universita’ di Catania, Viale A. Doria 6, 95125 Catania Italy
muscato@dma.unict.it, vdistefano@dma.unict.it

Summary. This paper is concerned with electron transport and heat generation in nanometric silicon semiconductor devices. An improved Monte Carlo method has been used, with the aim to reduce statistical fluctuations. Simulation results are presented for a 2D MOSFET device.

1 Introduction

In nano-devices the presence of very high and rapidly varying electric fields is the cause of thermal heating of the carriers and the crystal lattice. In fact, the external electric field transfers energy to the electrons and in turn to the lattice through the scattering mechanism. This self-heating process can influence significantly the electrical behaviour because the dissipated electrical energy causes a temperature rise in the device resulting in increased power dissipation. Power dissipation limits the performance of electron-phonon scattering processes within the simulated region [3–5, 8]. This counting estimator writes

\[\langle H^C \rangle (x,y) = \frac{n}{N_p \Delta t} \sum_j \hbar \omega_j \left[C_j^+ - C_j^- \right] \]

where \(n \) is the electron density, \(N_p \) is the particle number in the \((x,y)\)-cell, \(\Delta t \) is time interval in which the counting is made, \(\hbar \omega_j \) the energy of the exchanged phonon, and \(C_j^+ \), \(C_j^- \) are the numbers of the j-th phonon emitted and absorbed respectively.

This counting method is a more fundamental approach, as it calculates power dissipation directly from the number of phonon emissions and absorptions. Furthermore, the method allows the investigation of the relative contribution of different phonon types to heat dissipation, which is not possible with most other methods. The main drawback of this method is the computational effort, because the estimator \((2) \) is very noisy. In a recent paper [1], we have proposed a new estimator for the heat generation rate, which is based on the integrated probability scattering for the i-th phonon, i.e.

\[\lambda_i^\pm (\varepsilon, T_L) = \int w_j(k,k',T_L)dk' \]

where \(\varepsilon \) the electron energy, \(T_L \) is the lattice temperature, \(w_j \) is the electron-phonon scattering rate, and \(+ \) means emission of a phonon whereas - absorption of a phonon. The integrated probability estimator is

\[\langle H^P \rangle (x) = \frac{n}{N_p} \sum_{i=1}^{N_p} G(\varepsilon(k_i)) \]

where

\[G(\varepsilon) = \sum_j \hbar \omega_j \left[\lambda_j^+ (\varepsilon) - \lambda_j^- (\varepsilon) \right] . \]

2 Simulation results

A npn silicon MOSFET is simulated via the Monte Carlo method to provide the heat generation rate. The MOSFET domain is 480 x 240 nm (see [6] for geometric details). The source/drain regions have a uniform n-type doping of \(10^{18} \text{ cm}^{-3} \), the substrate a uniform p-type doping of \(10^{14} \text{ cm}^{-3} \), and the gate oxide
is 40 nm thick with a gate length of 160 nm. The bias voltages applied are $V_g=0$, $V_s=0.4$ V, $V_d=1$ V. We have considered quasi-parabolic band approximation, scattering with acoustic phonons (in the elastic approximation) and optical phonons. The Monte Carlo device simulation is marched at a time step of 0.2 fs to steady state with 200,000 particles considered in the simulation. Once steady state is reached, statistics of electron-phonon scattering are collected over a time period of 5 ps. The results obtained by the integrated probability estimator (4) shown in the figure 1 have significantly lower fluctuations compared to those obtained by the counting estimator (2), plotted in the figure 2. Consequently a more efficient evaluation of the heat generation rate can be achieved using the new estimator (4). Moreover, the heat generation rate can be used to evaluate correctly the drain resistance in the device [7].

Acknowledgement. This work has been supported by Università degli Studi di Catania, by MIUR PRIN 2009 “Problemi Matematici delle Teorie Cinetiche e Applicazioni”, and the CINECA Award N. HP10C3U0CA 2011 for the availability of high performance computing resources and support.

References

Simulation of a double-gate MOSFET by a non parabolic energy-transport subband model based on MEP including crystal heating

V. D. Camiola¹, G. Mascali², and V. Romano¹

¹ University of Catania, Italy camiola@dmi.unict.it, romano@dmi.unict.it
² University of Calabria, and INFN-Gruppo collegato di Cosenza, Italy mascali@unical.it

Summary. A nanoscale double-gate MOSFET is simulated by using a model based on the maximum entropy principle (MEP) by including the heating of the crystal lattice. The influence of this latter on the electrical performance of the device is discussed.

1 Mathematical model and simulations

The main aim of the paper is to simulate the nanoscale silicon double gate MOSFET (hereafter DG-MOSFET) reported in Fig. 1 by including also the crystal heating which can influence the electrical properties of the device and pose severe restrictions on its performance. In fact the phonons emitted by hot electrons create a phonon hot spot which increases the generated power density of the integrated circuits. This effect is becoming crucial by shrinking the dimension of the devices which is now below 100 nm, a length comparable with the wavelength of acoustic phonons.

We consider a DG-MOSFET with length $L_0 = 40$ nm, the width of the silicon layer $L_w = 8$ nm and the oxide thickness $t_{ox} = 1$ nm. The n^+ regions are 10 nm long. The doping in the n^+ regions is $N_D(x) = N_D^*$ = 10^{20} cm$^{-3}$ and in the n region is $N_D(x) = N_D^*$ = 10^{15} cm$^{-3}$, with a regularization at the two junctions by a hyperbolic tangent profile.

Due to the symmetries and the dimensions of the device, the transport is, within a good approximation, one dimensional and along the longitudinal direction with respect the two oxide layers, while the electrons are quantized in the transversal direction. Six equivalent valleys are considered with a single effective mass $m^* = 0.32 m_e$, m_e being the free electron mass.

Since the longitudinal length is of the order of a few tens of nanometers, the electrons as waves achieve equilibrium along the confining direction in a time which is much shorter than the typical transport time. Therefore we adopt a quasi-static description along the confining direction by a coupled Schrödinger-Poisson system which leads to a subband decomposition, while the transport along the longitudinal direction is described by a semiclassical Boltzmann equation for each subband.

Numerical integration of the Boltzmann-Schrödinger-Poisson system is very expensive from a computational point of view, for computer aided design (CAD) purposes (see references quoted in [3, 4]). In [3] we have formulated an energy transport model for the charge transport in the subbands by including the non parabolicity effects through the Kane dispersion relation. The model has been obtained, under a suitable diffusion scaling, from the Boltzmann equations by using the moment method and closing the moment equations with the Maximum Entropy Principle (MEP). Scatterings of electrons with acoustic and non polar optical phonons are taken into account. The parabolic subband case has been treated and simulated in [4].

The crystal heating is included adding a further equation for the lattice temperature T_L in the same spirit as in ref.s [5, 6]

$$\rho c_V \frac{\partial T_L}{\partial t} - \text{div}(K(T_L)\nabla T_L) = H, \quad (1)$$

with ρ and c_V: silicon density and specific heat respectively. H is the phonon energy production given by

$$H = -(1 + P_3)n C_W + P_3 \mathbf{J} \cdot \mathbf{E}, \quad (2)$$

where P_3 plays the role of a thermopower coefficient, nC_W is the electron energy production term with n electron density, and \mathbf{J} is the current. The electron density is related to the surface density in each subband by the relation

$$n = \sum_\nu \rho_\nu |\phi_\nu|^2$$

where ϕ_ν are the envelope functions obtained solving the Schrödinger-Poisson system. In [5] a more general model for H has been proposed.

We stress that the lattice temperature enters into the electron-phonon scattering and in turn in the production terms of the balance equations for the electron variables. The main aim of the present paper is to address the importance of the crystal heating on the electric performance of the device.

A suitable modification of the numerical scheme for the MEP energy transport-Schrödinger-Poisson
system developed in [4] is proposed which includes also the discretization of the lattice temperature balance equation via an ADI approach. Since the characteristic time of the crystal temperature is about one or two orders of magnitude longer than that of electrons, a multirate time step method is employed as in [6].

In the figures we report some preliminary results. It is possible to see a tremendous raise of the crystal energy $k_B T_L$, which at room temperature is about 0.0259 eV, near the drain where the electron energy has its maximum values due to the high electric field present there. It is likely that the lattice temperature reaches the silicon melting temperature. This poses severe restrictions on the source/drain and source/gate voltages with stringent design constraints.

Acknowledgement. V.D.C. and V. R. acknowledge the financial support by the P.R.I.N. project 2010 Kinetic and macroscopic models for particle transport in gases and semiconductors: analytical and computational aspects and by P.R.A. University of Catania. G. M. acknowledges the financial support by P.R.A., University of Calabria.

References

Electrical Modelling of Large-area Organic Light-emitting Devices

Evelyne Knapp and Beat Ruhstaller

Institute of Computational Physics, Zurich University of Applied Sciences, Wildbachstr. 21, 8401 Winterthur, Switzerland
evelyne.knapp@zhaw.ch, beat.ruhestaller@zhaw.ch

Summary. Systematic improvement of the performance and lifetime of organic light-emitting devices (OLEDs) are facilitated by electrical characterization through experiments and simulations. We model charge transport in organic disordered materials with the aid of a numerical 1D model for different experimental setups such as current-voltage curves, current transients and electrical impedance spectroscopy. For large-area OLEDs we couple the anode and cathode with the 1D model leading to an efficient 1+2D approach.

1 Introduction

Although the commercial success of organic light-emitting devices (OLEDs) in displays and lighting proceeds rapidly, further research is necessary to improve the efficiency and lifetime. Numerical simulations help to reduce the number of prototype iterations. Electrical characterization of devices and materials is crucial as it sheds light on the physical models of charge carrier transport in disordered, organic semiconductors. Charge transport and recombination models have been introduced several years ago for organic LEDs [1–5]. However, organic semiconductors differ considerably from their inorganic counterparts, not only by low carrier mobilities and long recombination times but also by the disorder. Taking the disordered nature of organic materials into account leads to a description in terms of a Gaussian density of states (DOS) which affects the mobility of charge carriers and the diffusion coefficient. The Gaussian DOS enhances the nonlinearities and the coupling between the equations. These circumstances prevent the use of classical drift-diffusion solvers. With the aid of a one-dimensional numerical OLED model we are able to simulate different operating conditions such as current-voltage curves, dark-injection measurements and impedance spectroscopy. We conduct steady-state, transient and small-signal analysis for the 1D OLED model and compare them with experiments. For lighting applications OLED panels are used that need to be as homogeneous as possible. To take this requirement into account we couple the 1D model to two 2D domains.

2 Physical Model

The drift-diffusion model (1) and (2) with the organic model ingredients (such as a Gaussian density of states and the use of the Fermi-Dirac statistics) are discretized with the finite volume method, the current expression (3) with the Scharfetter-Gummel discretization [7]. The resulting system of discretized equations is then solved in a coupled manner with Newton’s algorithm for the transient as well as the steady-state case [8].

\[
\begin{align*}
\nabla \cdot (\varepsilon \nabla \psi) &= q(n_f + n - p_f - p), \\
\n\nabla \cdot J_n &= q(\frac{\partial n}{\partial t}) = qR(n_f, p_f), \\
\n\nabla \cdot J_p &= q(\frac{\partial p}{\partial t}) = -qR(n_f, p_f), \\
J_n &= -q n_f \mu_n \nabla \psi + q D_n \nabla n_f, \\
J_p &= -q p_f \mu_p \nabla \psi - q D_p \nabla p_f.
\end{align*}
\]

For the small-signal analysis, the steady-state voltage \(V_0\) is modulated with a sinusoidal voltage with the amplitude \(V_{ac}\) and with the angular frequency \(\omega\): \(V = V_0 + V_{ac} e^{i\omega t}\). The potential \(\psi\) and the charge densities \(p\) and \(n\) can be expanded into a steady-state and harmonic term, e.g. \(\psi(x, t) = \psi_0(x) + \psi_{ac}(x)e^{i\omega t}\) where the ac components are complex-valued. To solve the small-signal equations, the solution of the dc problem for \(V = V_0\) is required. After inserting the expansions into the linearized drift-diffusion model we obtain a linear system of equations for the unknown ac components and thus for the ac current \(J_{ac}\). From the complex admittance \(Y = J_{ac}/V_{ac}\), the small-signal capacitance \(C\) and conductance \(G\) can be obtained.

Charge traps originate in impurities or material degradation and affect the transport. In Fig. 1 we show the effect of different charge trap types on the normalized capacitance at different frequencies. Fast traps are in quasi-equilibrium with free carriers, the transit time is longer than the trapping time whereas for slow traps the transit time is shorter than the trapping time. Slow traps enhance the capacitance at low frequencies while fast traps follow the dynamics of the trap-free case [9]. Similarly, charge traps affect current transients and current-voltage curves.
3 2+1D Approach for Large-area OLEDs

Aiming for a fast PC model for large-area OLEDs we have to take into account that realistic OLED structures consist of transparent anodes with a relatively low electrical conductivity. This affects the homogeneity of the OLED. Metal grid structures are applied to large-area OLEDs to improve the situation. To quantify the potential and temperature drop in large-area OLEDs we extend the 1D modelling of the organic material to higher dimensions. The 2+1D approach captures the important features of the transport process, and accounts for the high aspect ratio between the in-plane and the through-plane dimensions of OLEDs. In comparison to full 3D models, the 2+1D approach requires a reduced number of degrees of freedom, but still provides the lateral potential and temperature distribution. We make use of our in-house FEM tool (SESES) that allows the nonlinear coupling of 2D domains with the aid of the 1D model as shown in Fig. 2. The connection between the anode and cathode can either be:

- a parameterized experimental curve
- an analytical formula
- or a numerical model.

In Fig. 2 we show an OLED panel before optimizing the metal grid layout. No metal structure is present to improve the homogeneity of the OLED.

4 Conclusions

In this paper, we present a 1D model for organic LEDs that is applied to different operating conditions such as steady-state, transient and ac response. We investigate different charge trap types and their influence on the frequency-dependent capacitance. Further, we propose a 2+1D modeling approach for large-area OLEDs.

References

Numerical Estimation of the Impact of Energetic Disorder on the Low-Frequency CV Characteristics of Organic MOS Structures

C. de Falco1, F. Maddalena2, and D. Natali3

1 MOX-Modeling and Scientific Computing, Dipartimento di Matematica, Politecnico di Milano, P.zza L. da Vinci 32, 20133 Milano, Italy carlo.defalco@polimi.it
2 Center for Nano Science and Technology of IIT@PoliMI, Istituto Italiano di Tecnologia, Via Pascoli 70/3 20133 francesco.maddalena@iit.it
3 Dipartimento di Elettronica e Informazione, Politecnico di Milano, P.zza L. da Vinci 32, 20133 Milano, Italy, and Center for Nano Science and Technology of IIT@PoliMI, Istituto Italiano di Tecnologia, Via Pascoli 70/3 20133 dario.natali@polimi.it

Summary. We propose a numerical model for estimating the low frequency Capacitance-Voltage (CV) characteristics of organic MOS structures and we use it to study the dependence of CV curves on the DOS. Preliminary results seem to suggest that low frequency CV measurements could be a viable means to estimate the DOS width of a material independently of its transport properties.

1 Introduction

Conjugated polymers are attracting increasing interest as viable semiconducting materials for various applications such as Organic Solar Cells (OSCs) \cite{4}, Field Effect Transistors (FETs) \cite{7}, Organic Light-Emitting Diodes (OLEDs) \cite{5}, photodetectors \cite{1}. For this reason, much effort has recently gone in developing numerical tools for the simulation of this new class of devices \cite{3,8}. In particular regarding charge transport it must be reminded that organic semiconductors are generally amorphous and as such are to be modelled as disordered systems with localized states whose distribution is assumed to be in the simplest case a Gaussian with variance centered at the Lowest Unoccupied Molecular Orbital (LUMO) for electrons and centered at the Highest Occupied Molecular Orbital (HOMO) for holes. Charge carrier mobilities are modeled assuming that transport occurs as a hopping process (a thermally activated tunnelling) between localized sites and the variance of the Density of states appears as a parameter in the models. A method for determining the value of for a given material independently of its transport properties would greatly improve the predictive ability of numerical simulations. In this communication, we propose a numerical model for estimating the low frequency Capacitance-Voltage (CV) characteristics of organic MOS structures and we use it to study the dependence of CV curves on the DOS. In addition to the Gaussian DOS, we explore the effect on CV of more elaborate DOS models, such as two Gaussian distributions or a space-dependent distribution given by a Gaussian with an exponential tail close to the insulator interfaces which fades into a Gaussian towards the bulk, simulating the effect of disordered electric dipoles within the insulator. Preliminary results seem to suggest that low frequency CV measurements could be a viable means to estimate the DOS width of a material independently of its transport properties.

2 Model

A schematic representation of the device we consider is given in Fig.1 together with the relevant energetic levels involved. It consists of a slab of thickness \textit{t}_ox of insulating material on top of a semiconducting layer of thickness \textit{L} sandwiched between two metals. If we neglect gate leakage currents, the Fermi energy level \textit{E}_F is constant throughout the device, so we can set \textit{E}_F = 0 without loss of generality. The electric potential \textit{\varphi} := \textit{E}_LUMO/q in the device can be computed by solving the equation

\begin{equation}
\begin{cases}
-\text{div}(\varepsilon \nabla \varphi) = -q \, n(\varphi) & \text{in } (-\textit{L}, 0) \\
-\text{div}(\varepsilon \nabla \varphi) = 0 & \text{in } (0, \textit{t}_ox) \\
\varphi|_{-\textit{L}} = \varphi_0; & \varphi|_{\textit{t}_ox} = \varphi_{\textit{ox}} + \textit{V}
\end{cases}
\end{equation}

Fig. 1. Device geometry and relevant energetic levels involved with a positive voltage applied at the gate contact. Solid lines in the semiconductor refer to the LUMO and HOMO levels.
where ε denotes the electric permittivity, q the quantum of charge V the externally applied potential and the boundary condition values and are determined from the contact metal work function and the semiconductor material electron affinity as shown in Fig. 1. The accurate modeling of dependence of n on φ, which is crucial for understanding the impact of energetic disorder. If we assume the DOS to be a Gaussian centered at the LUMO, n may be expressed as

$$n = \int_{-\infty}^{\infty} g_{\sigma} (E - E_{\text{LUMO}}) F (E) \, dE$$

(2)

where

$$g_{\sigma} (x) = \frac{N_0}{\sigma \sqrt{2 \pi}} \exp \left\{ - \frac{x^2}{2 \sigma^2} \right\}$$

(3)

and $F (E)$ is the Fermi distribution function. Although the ansatz (3) is very common, it has been shown in [6] that the energy level distribution may vary greatly near the insulator-semiconductor interface due to non-vanishing dipole density in the gate insulator material rendering (3) quite inaccurate. As the approach given by [6] for the modification of the DOS due to such effect has a very high computational cost, we take an alternative approach in order to account for this effect while retaining an acceptable level of model complexity. We introduce a modified density of state which we assume to take the following form

$$g_{\sigma, \lambda} (x) = g_{\sigma} (x) + \frac{\lambda N_0}{2} \exp \{ -\lambda |x| \}$$

(4)

and compute the parameters σ and λ in (4) via an automatic optimization procedure in order to fit the model of [6]. Fig. 2 shows a comparison of the simplified model (4) with that of [6].

3 Numerical algorithms and results

The CV characteristics are obtained from equations (1)- (4) via the numerical method, based on a Newton iteration, described in [2]. Suitable quadrature rules have been devised to compute the integrals appearing in (3) and (4) which need to be evaluated many times at each iteration step. The preliminaty numerical results shown in Fig. 3 show a strong dependence of the CV curves (and of its derivatives) on the disorder parameter σ. Ongoing research is directed towards the solution of the inverse problem of determining σ from measured CV characteristics.

References

Model order reduction for PDE constrained optimization in vibrations

Karl Meerbergen1 and Yao Yue2

KU Leuven, Department of Computer Science, Karl.Meerbergen@cs.kuleuven.be, Yao.Yue@cs.kuleuven.be

Summary. In PDE constrained optimization, physical parameters need to be determined so that some objective function is minimized. We assume here an objective function that depends on the output of a dynamical system, modeled by a discretized PDE. Krylov-Padé model reduction for computing the output can significantly decrease the computation time. In addition, gradients are well approximated, which allows using gradient based optimization on the reduced model. We show numerical results for different methods embedded in line search and trust region methods for benchmark problems from structural engineering.

1 Introduction

Given a dynamical system described by the following system of second order ordinary differential equations:

\[
(K + sC + s^2 M)x = fu(s) \quad y(s) = d^T x
\]

where \(K\), \(C\), and \(M\) are respectively the stiffness, damping and mass matrices, are sparse, and have size \(n \times n\) with \(n\) large. The vector \(f\) is input and \(d\) the output vector. Let the matrices depend on parameters \(\gamma \in \mathbb{R}^p\), then we wish to determine the value of \(\gamma\) that minimizes one of the following functions

\[
g_2(\gamma) = \int_{\omega_{\min}}^{\omega_{\max}} |\gamma(i\omega)|^2 \, d\omega \quad (2)
g_{\infty}(\gamma) = \max_{0 \leq \omega \leq \omega_{\max}} |\gamma(i\omega)| \quad (3)
\]

The evaluation of \(g\) is expensive. We will therefore define a reduced model of (1) that approximates \(y\) well and is, because of its size, much cheaper to evaluate. The results of this paper are a summary of the full papers \[\text{[4]}\] \[\text{[3]}\]. In the remainder of the paper we use \(A(s) = K + sC + s^2 M\).

2 Krylov-Padé model reduction

One of the most popular model reduction techniques for vibrations are Krylov methods. For second order problems as (1), the SOAR method \[\text{[1]}\] is preferred. This method builds the matrices \(V_k, W_k \in \mathbb{C}^{n \times k}\) with \(k \ll n\). The columns of \(V_k\) span the derivatives of orders \(0, \ldots, k - 1\) of \(A^{-1}(s)f\) around \(s = s_0\). Similarly, the columns of \(W_k\) span the derivatives of orders \(0, \ldots, k - 1\) of \(A^{-1}(s)d\) around \(s = s_0\). The reduced model is defined as

\[
(\hat{K} + s\hat{C} + s^2\hat{M})\hat{x} = \hat{f}u(s) \quad (4)
\]

with \(\hat{K} = W_k^* K V_k\), \(\hat{C} = W_k^* C V_k\), and \(\hat{M} = W_k^* M V_k\), and the vectors \(\hat{f} = W_k^* f\) and \(\hat{d} = V_k d\). It can be proven that the first \(2k\) derivatives of \(y\) and \(\hat{y}\) evaluated at \(s = s_0\) match. This property is also known as moment matching.

In order to evaluate \(g\) for a given \(\gamma = \gamma_s\), we first build the corresponding reduced model \(\hat{y}\) using the two-sided SOAR method for the given value \(\gamma_s\). The matrices \(\hat{K}\), \(\hat{C}\), and \(\hat{M}\) then also depend on \(\gamma\). We hence have an interpolatory reduced model around the interpolation point \(\gamma_s\). It can be shown \[\text{[4]}\] that \(\nabla_y g(\gamma_s)\) and \(\nabla_{\gamma_s} y(\gamma_s)\) match the first \(k\) derivatives around \(s_0\). We may thus conclude that two-sided SOAR models compute accurate approximations to \(y\) and its gradient \(s\) around \(s_0\) and for fixed \(\gamma_s\).

Then, \(g\) is computed using \(\hat{y}\). For \(g_{\infty}\), we use a quadrature rule, and for \(g_{\max}\) we use a global optimization method consisting of a coarse grid search and local improvement by a quasi Newton method \[\text{[4]}\].

The gradient is computed accordingly.

Let us assume \(p = 1\), i.e., \(\gamma\) is a single parameter. Another method that we will use for optimization is the PIMTAP method \[\text{[2]}\]. This is also a moment matching method for \(s\), where in addition, also moments are matched for \(\gamma\) as well as cross moments, i.e. the derivatives \(\partial^j y/\partial s^i \partial \gamma\). The reduced model can then be used to efficiently evaluate \(y\) for all \(s\) near \(s_0\) and \(\gamma\) near \(\gamma_s\).

3 Line search optimization

In general, \[\text{[2]}\] is a nonconvex optimization problem. The default method for such problem is probably the damped BFGS method. In iteration \(j\), the \(j + 1\)st iterate is computed as

\[
y_{j+1} = y_j + \alpha_j p_j \quad , \quad H_j p_j = -\nabla y g(y_j)
\]

where \(H_j\) is the BFGS approximation of the true Hessian of \(g\). For a nonconvex function, we determine \(\alpha_j\)
so that the Armijo condition is satisfied. This is a condition that forces sufficient decrease of the objective function in order to achieve convergence. In general, a number of \(\gamma_{j+1} \)'s have to be computed for a sequence of values of \(\alpha \)'s until the Armijo condition is satisfied. This is called backtracking. For each new value of \(\gamma \), we build a new reduced model using the SOAR method.

Since \(\gamma_{j+1} \) lies on a line in the parameter space, \(g(\gamma_{j+1}) \) can be efficiently computed when we have a reduced model for both \(\gamma_j \) and \(\gamma_j + \alpha \gamma_j \) for \(\alpha \) in some interval. This can be achieved by a reduced model using the PIMTAP method.

We used damped BFGS accelerated by SOAR or PIMTAP for minimizing the vibrations in a concrete floor subjected to road noise by determining the best parameters of the floor damper [4]. In this case, there were two parameters: the stiffness and the damping of the floor damper. We see from Table 1 that for the optimization of \(g_2 \), which is usually smooth and differentiable, the two-sided SOAR method reaches the best performance, while the minimization of \(g_\infty \), which is not a smooth function and therefore requires many backtracking steps, is more efficient using PIMTAP. We also conclude that \(g_\infty \) optimization is harder than \(g_2 \) optimization, because \(g_\infty \) is a nonsmooth function.

4 Trust region based optimization

In [3], we discussed trust region approaches exploiting the effort done to build a reduced model. In the SOAR approach, we used the reduced model [3] for evaluating \(g \) for a fixed \(\gamma = \gamma_j \). The idea here is simple: since \(V_\gamma g \) is well approximated at \(\gamma_j \), the reduced model approximates \(g \) well for other values of \(\gamma \); if \(g \) is Lipschitz continuous at \(\gamma_j \). In contrast to the SOAR approach, we use [4] as a parametric model in \(s \) but also in \(\gamma \) in a trust region setting. The difficulty is that this reduced model is an extrapolation and may therefore quickly lose its accuracy. Therefore, we developed a simple error estimation to control the quality of the reduced model. Since the Hessian is not necessarily well approximated, we rely again on a quasi-Newton method.

We then defined a trust region method, based on the error estimation of the reduced model. The trust region contains the set of parameters \(\gamma \) where the reduced model is accurate. An error-based trust region approach is then used, relying on Cauchy points to guarantee convergence of the method. The solution of the trust region subproblem is cheap, since it fully relies on the reduced model. However, in order to have a provably convergent method, we may sometimes require additional reduced models to refine the trust region [5].

Table 2 compares the SOAR approach and the trust region approach for a model of a footbridge with four dampers. The eight parameters that model these dampers have to be determined so that the vibration in some point on the bridge is minimized. Note that only two reduced models are required, while 70 are needed for the SOAR approach. This leads to an important reduction of the computation time. However, it should be noted that the error estimation of \(g \) using the reduced model is much more expensive than evaluating the reduced model. This explains why there is no speed-up of a factor 35.

\[
\begin{array}{cccc}
\text{Direct} & \text{SOAR} & \text{Trust region} \\
\text{Time (s)} & 70 \times 540 & 897 & 194 \\
\text{iter.} & 70 & 70 & 2 \\
\end{array}
\]

Table 2. Results for the footbridge problem

Acknowledgement. This paper presents research results supported in part by the Belgian Network DYSBO, funded by the Interuniversity Attraction Poles Programme, initiated by the Belgian State Science Policy, and supported in part by the Research Council KU Leuven grants PFV/10/002 and OT/10/038.

References

Stochastic Collocation Methods and Model Reduction for Maxwell’s Equations

Peter Benner and Judith Schneider
Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106 Magdeburg, Germany
benner@mpi-magdeburg.mpg.de, will@mpi-magdeburg.mpg.de

Summary. We use a Stroud-based collocation method to analyze the parameter behavior of the time-harmonic Maxwell equations and reduce the computational costs by applying model order reduction to the system matrices.

1 Motivation

During the design process of semiconductor structures, simulations of new micro and nano scale systems are essential due to, e.g., the expensive production of prototypes. An important aspect is the ongoing miniaturization of the structures on the one hand and the increase in the working frequencies on the other hand. The high density of electric conductors induces parasitic effects, e.g., crosstalk, which have to be considered already in the design stage. Therefore, the exact knowledge of the semiconductor structures and the surrounding electromagnetic (EM) field is necessary.

Another effect, which plays a no longer negligible role, is the variation of the feature structure size caused by inaccuracies of the resolution during the lithography. To consider these variations in the simulation, models with parametric uncertainties are required. A variational analysis of the effect of these uncertainties on the EM field requires methods for uncertainty quantification (UQ) [4, 6]. For this purpose, we will employ non-intrusive approaches as they allow the use of EM field solvers for deterministic problems without accessing the source code. Possible choices are Monte Carlo and stochastic collocation. Here we will employ the latter due to their faster convergence. Still, UQ via stochastic collocation requires numerous full-order EM field solves which can be a time-consuming task for complicated 3D geometries. It is thus our goal to combine this approach with model order reduction methods (MOR) for the Maxwell equations to reduce the computational cost, where the reduced-order model needs to preserve the statistical properties of the full-order model. All these problems are addressed within the research network Model Reduction for Fast Simulation of New Semiconductor Structures for Nanotechnology and Microsystems Technology (MoreSim4Nano), see [5]. Figure 1 shows a coplanar waveguide which serves as a benchmark within MoreSim4Nano and for which we show some numerical results in Section 4.

2 Stochastic Collocation for EM Field Computations

The system of equations describing the EM field are Maxwell’s equations

\[
\begin{align*}
\partial_t (\varepsilon E) &= \nabla \times H - \sigma E - J \\
\partial_t (\mu H) &= -\nabla \times E \\
\nabla \cdot (\varepsilon E) &= \rho \\
\nabla \cdot (\mu H) &= 0,
\end{align*}
\]

(1)

with the electric field intensity \(E\), the magnetic field intensity \(H\), the charge density \(\rho\), the impressed current source \(J\), and material parameters \(\varepsilon = \varepsilon_r \cdot \varepsilon_0\) (permittivity), \(\mu = \mu_r \cdot \mu_0\) (permeability), \(\sigma\) (electrical conductivity). For simplification, we work with the time-harmonic form

\[
\nabla \times (\mu^{-1} \nabla \times E) + i \omega \sigma E - \omega^2 \varepsilon E = i \omega J,
\]

(1)

on the space \(X = \{E \in H^0_{curl} | \nabla \cdot (\varepsilon E) = \rho\}\). Up to now, we consider the material parameters \(\varepsilon_r\), \(\mu_r\), and \(\sigma\) as uncertain. For the examination of their influence on the statistical behavior of the solution \(E\) we use stochastic collocation [1] with Stroud interpolation points [2].

2.1 Stochastic Collocation

Collocation methods rely on interpolation. The idea is to approximate high-dimensional integrals, e.g., the
expectation value of our solution E, by an (efficient) quadrature rule
\[
\mathbb{E}(E) = \int_{\Gamma} E(\xi) f(\xi) d\xi = \sum_{i=1}^{n} E(\xi_i) w_i.
\]
Here Γ is the image of the probability space under the probability measure, f is the unknown probability density function of E, ξ are the n interpolation points and w_i are the associated weights.

2.2 Stroud Integration

The interpolation formula used in our algorithm was introduced in 1957 by A. H. Stroud [7] and yields either beta or normal distributed interpolation points which are weighted by $1/n$, where n is the number of interpolation points as in Sec. 2.1. Though we need $\varepsilon_\tau, \varepsilon_A > 0$ and $\sigma \geq 0$, we suppose them to be log-normal distributed and use the exponential of the normal distributed Stroud points as interpolation points.

3 Model Order Reduction

The discretization of (1) leads to the following system
\[
\mu_r A_{\mu_0} e + \varepsilon_r A_{\varepsilon_0} \dot{e} + \sigma A \ddot{e} = B u, \\
y = Ce,
\]
where e is the discretized electric field, $A_{\mu_0}, A_{\varepsilon_0}$ and A are the parameter independent system matrices in $\mathbb{R}^{N \times N}$, u, y define the inputs/outputs, and B, C specify the input/output behavior. Here N is the number of grid points in G and large. This system is then reduced, e.g., by means of rational interpolation methods as in [3] and we achieve a reduced system of the form
\[
\mu_r \hat{A}_{\mu_0} \hat{e} + \varepsilon_r \hat{A}_{\varepsilon_0} \dot{\hat{e}} + \sigma \hat{A} \ddot{\hat{e}} = \hat{B} u, \\
\hat{y} = \hat{C} \hat{e},
\]
where $\hat{A}_{\mu_0}, \hat{A}_{\varepsilon_0}, \hat{A} \in \mathbb{R}^{r \times r}$ with $r \ll N$ and $\| y - \hat{y} \|$ small.

4 Numerical Results Concerning the Stochastic Collocation Approach

As a benchmark we consider a coplanar waveguide with dielectric overlay, see Figure 1. The model consists of three perfectly conducting striplines situated at a height of 10mm in a shielded box with perfect electric conductor (PEC) boundary. The system is excited at one of the discrete ports and the output is taken at the other one. Below a height of 15mm there is a substrate with $\varepsilon_1^r \approx 4.4$ and $\sigma_1^r \approx 0.02S/m$, above there is air with $\varepsilon_2^r \approx 1.07$ and $\sigma_2^r \approx 0.01S/m$, while $\mu_r \approx 1$ within the whole box. The variance of each parameter is approximately 1% of the expected value.

The system is treated as a system with 5 uncertain parameters, which leads to the affine discretized form
\[
\mu_r A_{\mu_0} e + \varepsilon_r A_{\varepsilon_0} \dot{e} + \sigma A \ddot{e} = B u, \\
y = Ce.
\]

The discretization is done in FEniCS by use of Nédélec finite elements and the Stroud-based collocation is implemented in MATLAB®. Since the used discretization has only 18755 degrees of freedom, there is no model order reduction used up to now. The Stroud-based collocation uses only 10 supporting points and the computation requires less than a minute. To verify the accuracy, the results are compared with a Monte Carlo simulation which operates on 10000 interpolation points. This takes several hours. Using the frequency $\omega = 0.6 \cdot 10^6$ we achieve the following relative errors for the expected value of e and y
\[
err_{rel,E(e)} = 0.0038\% \quad \text{and} \quad err_{rel,E(y)} = 0.0042\%.
\]

Considering the fact that we use only 10 Stroud points the results are satisfactory. To achieve more accuracy one could use, e.g., a lot more sparse grid points, which would be much more expensive. For this reason and for systems of higher dimension we need MOR.

Acknowledgement. The work reported in this paper was supported by the German Federal Ministry of Education and Research (BMBF), grant no. 03MS613A. Responsibility for the contents of this publication rests with the authors.

References

Automatic model order reduction by moment-matching according to an efficient output error bound

Lihong Feng and Peter Benner

Max Planck Institute for Dynamics of Complex Technical Systems, Germany feng@mpi-magdeburg.mpg.de, benner@mpi-magdeburg.mpg.de

Summary. An output error bound is proposed for model order reduction of linear time invariant (LTI) systems. According to the error bound, the model order reduction method based on moment-matching (moment-matching MOR) can be implemented by selecting the expansion points adaptively, such that the reduced model can be obtained automatically. The error bound is an estimation for the error between the transfer function of the original system and that of the reduced model. Simulation results show the efficiency of the error bound.

1 Introduction

Consider an LTI system

\[E \frac{dx}{dt} = Ax + Bu(t), \quad y(t) = Cx. \]

(1)

If we use moment-matching MOR, usually we apply the Laplace transform to (1), and get

\[sEx(s) - Ax(s) = Bu(s), \quad y(s) = Cx(s). \]

(2)

From the series expansion of \(x(s) \),

\[x(s) = \sum_{i=0}^{\infty} (-s_0E-A)^{-1}E^i(s_0E-A)^{-1}BU(s)(s-s_0)^i, \]

(3)

the matrix \(V \) is computed as

\[\text{range}\{V\} = \text{span}\{\bar{B}(s_0), \tilde{A}(s_0)\bar{B}(s_0), \ldots, (\tilde{A}(s_0))^i\bar{B}(s_0)\}, \]

(4)

where \(\bar{A}(s_0) = (s_0E-A)^{-1}E, \tilde{B}(s_0) = (s_0E-A)^{-1}B \) and \(q \ll n \). The reduced model is

\[V^T E V \frac{dx}{dt} = V^T AV \dot{z} + V^T Bu(t), \quad y(t) = CVz. \]

(5)

Instead of using single-point expansion \(s_0 \), one can use multi-point expansion to compute \(V \). That is, choosing multiple expansion points \(s_i, i = 0, 1, \ldots, m \), we compute each matrix \(V_i \) corresponding to \(s_i \) according to (4). Finally, \(V = \text{orthogonalize}\{V_1, \ldots, V_m\} \).

By using multi-point expansion, the error of the reduced model can be kept small in a wider frequency range. At present, how to adaptively choose the expansion points \(s_i \) is under investigation using several points of view. We aim to derive an error bound for the transfer function \(\hat{H}(s) \) of the reduced model, such that the expansion points can be adaptively chosen according to the error bound. Since the transfer function can be considered as the impulse response of the LTI system in frequency domain, the error bound can be considered as the output error bound in frequency domain.

The error bound is motivated by the idea in [1], where an output error bound for the weak form of a parametrized Partial Differential Equation (PDE) is derived. The error bound in [1] is obtained in the function space for the weak form, while all the parameters in the PDE must be real variables. Since moment-matching MOR directly deal with the discretized system (2) in the vector space, it is best that an error bound is derived in the vector space rather than in the function space. Moreover, system (2) can be seen as a parametrized system with parameter \(s \) being a complex variable.

In summary, in order to obtain the error bound for \(\hat{H}(s) \), the method in [1] is not valid due to the challenges below:

1. The error bound should be derived in the vector space \(\mathbb{C}^n \).
2. The error bound should be valid for complex parameters.

Method for deriving the output error bound must be adapted in order to meet the above two challenges.

2 Output Error Bound for an LTI System

We first present the analysis for single-input single-output (SISO) systems, then extend the result to multiple-input multiple-output (MIMO) systems.

We assume that the matrix \(G(s) = sE - A \) satisfies

\[\text{Re}(x^* G(s) x) \geq \alpha(s)(x^* \hat{A} x), \]

(6)

and

\[\text{Im}(x^* G(s) x) \geq \gamma(s)(x^* \hat{A} x), \]

(7)

where \(\text{Re}(\cdot) \) means the real part of \(x^* G(s) x \), and \(\text{Im}(\cdot) \) is the imaginary part. \(\alpha(s), \gamma(s): C \to \mathbb{R}_+ \) may depend on the parameter \(s \). The matrix \(\hat{A} = s_0E - A \) is
assumed to be symmetric, positive definite, which is satisfied by many engineering problems. For systems with \(C \neq B^T \), we need to define a dual system in frequency domain,
\[
\mathcal{S}E^*x^{du}(s) - A^*x^{du}(s) = -C^*, \quad j^{du} = B^*\hat{x}^{du}(s).
\]
Let \(r^{pr}(s) = B - G(s)^*s \) be the residual for the primal system in (2), and \(r^{du}(s) = -C^* - (\mathcal{S}E^* - A^*)\hat{s}^{du}(s) = G^*(s)\hat{x}^{du}(s) \) be the residual for the dual system. We will show that \(r^{pr}(s) \) can be represented through a vector \(\hat{e}^{pr} \in \mathbb{C}^n \), and \(r^{du}(s) \) can be represented through a vector \(\hat{e}^{du} \in \mathbb{C}^n \).

Define a function \(f^{pr}(\tilde{\xi}) = \xi^*r^{pr}(s) : \mathbb{C}^n \rightarrow \mathbb{C} \) for the primal system. From the Riez representation theorem, there exists a unique vector \(\hat{e}^{pr} \in \mathbb{C}^n \), such that
\[
f^{pr}(\tilde{\xi}) = \langle \hat{e}^{pr}, \tilde{\xi} \rangle = \xi^*\hat{e}^{pr}.
\]
We also define a function \(f^{du}(\tilde{\xi}) = r^{du}(s)^*\tilde{\xi} : \mathbb{C}^n \rightarrow \mathbb{C} \). Similarly, there exists a unique vector \(\hat{e}^{du} \in \mathbb{C}^n \), such that
\[
f^{du}(\tilde{\xi}) = \langle \hat{e}^{du}, \tilde{\xi} \rangle = \xi^*\hat{e}^{du}.
\]

Theorem 1. If the reduced model of the primal system (2) and that of the dual system (3) is computed by the same projection matrix \(V \), the matrices \(E, A \) are symmetric, and \(G(s) \) satisfies (4), and (7), then
\[-S_R - \beta_R \leq Re(H(s) - \hat{H}(s)) \leq S_R - \beta_R \text{ and } -S_I - \beta_I \leq \Im(H(s) - \hat{H}(s)) \leq S_I - \beta_I. \]
Here, \(\beta_R = \frac{1}{2a(s)}(\hat{e}^{pr})^*\hat{A}\hat{e}^{du} + \frac{1}{2a(s)}(\hat{e}^{du})^*\hat{A}\hat{e}^{pr}, \beta_I = \frac{a(s)}{\sqrt{2a(s)}} \beta_R, \]
\[S_R = \frac{1}{2a(s)}\sqrt{(\hat{e}^{pr})^*\hat{A}\hat{e}^{du}}\sqrt{(\hat{e}^{du})^*\hat{A}\hat{e}^{pr}}, S_I = \frac{a(s)}{\sqrt{2a(s)}} S_R.
\]

From Theorem 1, we get the error bound,
\[
|H(s) - \hat{H}(s)| \leq \sqrt{B_R^2 + B_I^2} := \Delta(s),
\]
where \(B_R = \max\{|S_R - \beta_R|, |S_R + \beta_R|\}, B_I = \max\{|S_I - \beta_I|, |S_I + \beta_I|\} \). The error bound \(\Delta(s) \) can be computed cheaply though it is dependent on the parameter \(s \), because the main computational part for \(\Delta(s) \) is independent of \(s \), which can be implemented off-line. If relative error is preferred, one should use \(\Delta_R(s) = \Delta(s)/H(s) \). For MIMO systems, assume \(H_{ij}(s) \) is the transfer function corresponding to the \(i \)th input and \(j \)th output. For each pair of \(i, j \), we can compute \(\Delta_{ij}(s) \). The error bound \(\Delta(s) \) can be defined as \(\Delta(s) = \max_{ij} \Delta_{ij}(s) \).

3 Adaptively Choosing Expansion Points

From the construction of the error estimator \(\Delta(s) \), the projection matrix \(V \) can be constructed by the algorithm as below,

Algorithm 1 \(V = [] \):

1. Choose initial \(s^* \):
2. \(\varepsilon = 1 \):
3. While \(\varepsilon \geq \varepsilon_{tol} \) (\(\varepsilon_{tol} < 1 \) is the error tolerance.):
4. range \((V) = \text{range}(V) + \text{span}(\hat{B}(s^*), \hat{A}(s^*)\hat{B}, \ldots, \hat{A}(s^*)\hat{B}) \);
5. \(s^* = \arg\max_{s \in \Sigma_{train}} \Delta(s) \); (\(\Sigma_{train} \) is the sample space for \(s \))
6. \(\varepsilon = \Delta(s^*) \)
7. End While

4 Simulation Results

We take two examples to support the theoretical analysis above. One example is a spiral inductor, a SISO system; the other is an optical filter, a system with 5 outputs. Both examples are taken from the Oberwolfach Benchmark Collection (URL: http://simulation.uni-heidelberg.de/downloads/benchmark).

Define \(\varepsilon_{max} = \max_{i,j,k} |H_{ij}(s_k) - \hat{H}_{ij}(s_k)|/|H_{ij}(s_k)| \) as the maximal true error of the current \(\hat{H}(s) \) over 2000 sample points, and it is used as the error of the current reduced model. Results of Algorithm 1 for the spiral inductor is listed in Table 1. \(r \) is the order of the reduced model. After 4 iterations, four expansion points have been selected, a reduced model with accuracy \(O(10^{-8}) \) is obtained. Figure 1 plots \(\varepsilon_{max} \) vs. the error bound \(\Delta_R(s) \) for the multi-output system, showing \(\Delta_R(s) \) performs well, especially at the latter iterations.

<table>
<thead>
<tr>
<th>Table 1. Spiral inductor (q = 5, \varepsilon_{tol} = 10^{-3}, n = 1434, r = 24)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iteration (s^*/(j\omega))</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

Fig. 1. Optical filter, \(q = 1, \varepsilon_{tol} = 10^{-3}, n = 1668, r = 21 \).
Reduced order modeling of ODE-PDE networks

Michael Hinze\(^1\) and Ulrich Matthes\(^1\)

Department of Mathematics, University of Hamburg, Bundesstr. 55, 20146 Hamburg, Germany,
michael.hinze@uni-hamburg.de, ulrich.matthes@math.uni-hamburg.de

Summary. We propose a model order reduction (MOR) approach for networks containing simple and complex components modeled by linear ODE and nonlinear PDE systems respectively. These systems are coupled through the network topology using the Kirchhoff laws. We consider as application MOR for electrical networks, where semiconductors form the complex components. POD combined with discrete empirical interpolation (DEIM) and passivity-preserving balanced truncation methods for electrical circuits (PABTEC) can be used to reduce the dimension of the whole model.

1 Introduction

We propose a simulation-based MOR approach for the reduction of networks consisting of (many) simple and (only few) complex components. We assume that the simple and complex components are modeled by systems of linear ODEs and nonlinear PDEs, respectively, which are coupled through the network topology using the Kirchhoff laws.

Fig. 1. Sketch of a coupled system with one semiconductor forming the complex component.

We consider electrical networks where the simple components consist of resistors, capacitors, voltage sources, current sources, and inductors, and the complex components are formed by e.g. semi-conductors, see Fig. 1. The overall system then is represented by a nonlinear PDAE system, see e.g. [2, 5]. We address the following issues:

1. construction of reduced order models for the complex components
2. reduction of the complete network while retaining the structure of a network

2 Modeling of an electrical network

In electrical networks resistors, capacitors, and inductors form the simple components which in general are modeled by linear ODEs. Complex components are given by e.g. semiconductors which are modeled by PDE systems. Considering additional voltage and current sources the overall network can be modeled by a partial-differential algebraic equation (PDAE) which is obtained as follows. First the network containing only the simple components is modeled by a differential algebraic equation (DAE) which is obtained by a modified nodal analysis (MNA), including the Ohmic contacts \(\Gamma_O \) of the semiconductors as network nodes, see Fig. 1. Denoting by \(e \) the node potentials and by \(j_L, j_V, \) and \(j_S \) the currents of inductive, voltage source, and semiconductor branches, the DAE reads (see [5, 9, 12])

\[
\begin{align*}
AC \frac{d}{dt} q_C(A_C^T e, t) &+ ARg(A_R^T e, t) \\
+ A_L j_L + A_V j_V + A_S j_S &=- AI_s(t), \quad (1) \\
\frac{d}{dt} \phi_L(j_L, t) &- A_L^T e = 0, \quad (2) \\
A_V^T e & = v_s(t). \quad (3)
\end{align*}
\]

Here, the incidence matrix \(A = [A_R, A_C, A_L, A_V, A_S, A_I] \) represents the network topology, e.g. at each non mass node \(i, \) \(a_{ij} = 1 \) if the branch \(j \) leaves node \(i \) and \(a_{ij} = -1 \) if the branch \(j \) enters node \(i \) and \(a_{ij} = 0 \) elsewhere. In particular the matrix \(A_S \) denotes the semiconductor incidence matrix. The functions \(q_C, g \) and \(\phi_L \) are continuously differentiable defining the voltage-current relations of the network components. The continuous functions \(v_s \) and \(i_s \) are the voltage and current sources. For details we refer to [7].

In a second step the semiconductors are modeled by PDE systems, which are then coupled to the DAE of the network, see e.g. [1, 2] and the references cited.
there. Further details of our approach are given in [7]. The analytical and numerical analysis of PDAE systems of the presented form is subject to current research, see [2, 4, 11, 12].

3 Reduced order models for complex components

We assume that every complex component is modeled by a time-dependent PDE system which is amenable to a numerical treatment with Galerkin methods. After appropriate spatial discretization the method of lines then yields a large, nonlinear ODE system representing the spatially discrete complex component. This nonlinear ODE system now represents the complex component in the network. The reduction of the complex components is based on simulation-based MOR with proper orthogonal decomposition (POD). In this approach time snapshots of the complex components are extracted from snapshots of the simulation of the complete network. POD for the complex component then is performed using the extracted parts of the snapshots. In combination with the direct empirical interpolation method (DEIM) this now delivers low dimensional, nonlinear surrogate models for the complex components, see [6] for details. It is an important feature of this reduction technique that it delivers distinct reduced order models for the same complex component at different locations in the network.

4 Reduction of the whole network

The overall network with simple and complex components is represented by a nonlinear DAE system, where the linear and nonlinear part stems from the simple and spatially-discrete complex components respectively. The reduction for the complex components is performed as in the previous section, whereas the linear part is approximated by a reduced order linear model of lower dimension. In the case of an electrical network the passivity preserving reduction method (MATLAB Toolbox) PABTEC [8, 10] is used for the reduction of the linear part of the network. Finally, the reduced order models obtained with the approaches sketched are recoupled appropriately. The obtained large and sparse nonlinear DAE system as well as the small and dense reduced-order model are integrated using the DASPK software package [3] based on a BDF method, where the nonlinear equations are solved using Newton’s method.

The results obtained demonstrate that the recoupling of the PABTEC reduced order model with the POD-MOR model for the semiconductor delivers an overall reduced-order model for the circuit-device system which allows significantly faster simulations (the speedup-factor is about 20) while keeping the relative errors below 10%.

Finally we sketch how our approach can be applied to parametrized MOR extending the techniques of [7].

Acknowledgement. The work reported in this paper was supported by the German Federal Ministry of Education and Research (BMBF), grant no. 03H1PAE5. Responsibility for the contents of this publication rests with the authors.

References

Index-aware model Order Reduction: LTI DAEs in electric networks
Nicodemus Banagaaya¹ and Wil Schilders¹
Dept. of Mathematics and Computer Science, Technische Universiteit Eindhoven, The Netherlands
n.banagaaya@tue.nl, w.h.a.schilders@tue.nl

Summary. Model order reduction (MOR) has been widely used in the electric networks but little has been done to reduce higher index differential algebraic equations (DAEs). Most methods first do an index reduction before reducing a higher DAEs but this can lead to loss of system physical properties. In this paper we present a new MOR method for DAEs called the index-aware MOR (IMOR) which can reduce higher index-2 system while preserving the index of the system.

1 Introduction

Consider a linear time invariant (LTI) DAE system:

\begin{align}
Ex'(t) &= Ax(t) + Bu, \quad x(0) = x_0, \quad (1a) \\
y(t) &= C^T x(t), \quad (1b)
\end{align}

where \(E,A \in \mathbb{R}^{n,n}, B \in \mathbb{R}^{n,m}, C \in \mathbb{R}^{n,f}, x(t) \in \mathbb{R}^n\) is the state vector, \(u(i) \in \mathbb{R}^m\) is the input vector, \(y(t) \in \mathbb{R}^f\) is the output vector and \(x_0 \in \mathbb{R}^n\) must be a consistent initial value since \(E\) is singular. In many MOR methods they always assume that \(x_0 = 0\) which lead to a transfer function \(H(s) = C^T (sE - A)^{-1}B\) if and only if matrix pencil \(sE - A\) is regular. Unfortunately for the case of DAEs we cannot always have this freedom of choosing an arbitrary initial condition \(x_0\), in fact we cannot always obtain a transfer function especially for index greater than 1 as discussed in Sect. 2. This motivated us to propose a new MOR technique for DAEs called the IMOR method which takes care of this limitation. In this technique before we apply MOR we first decompose the DAE system into differential and algebraic parts using matrix and projector chains introduced by M"arz in 1996. We then use the existing MOR techniques such as the Krylov based methods on the differential part and develop new techniques for the algebraic part. This is done as follows: Assume \((1a)\) is of tractability index \(\mu\), then it’s projector and matrix chains can be written as, set
\(E_0 := E, A_0 := A, E_{j+1} = E_j - A_j Q_j, A_{j+1} := A_j P_j, \ j \geq 0, \) \(\text{Im} Q_j = \text{Ker} E_j, P_j = I_n - Q_j, \)
There exists \(\mu\) such that \(E_\mu\) is nonsingular while all \(E_j\) are singular for all \(0 \leq j < \mu - 1\). Using these chains we can rewrite Equation \((1a)\) as projected system of index-\(\mu\):

\[P_{\mu-1} \cdots P_0 x' + Q_0 x + \cdots + Q_{\mu-1} x = E_{\mu}^{-1} (A_{\mu} x + Bu)\]

In order to decompose higher index systems \((\mu > 1)\), M"arz \([4]\) suggested an additional constraint \(Q_j Q_i = 0, j > i\) on the projector construction. If this constraint holds then Equation \((2)\) can be decomposed into differential and algebraic parts. However, the M"arz decomposition leads to a decoupled system of dimension \((\mu + 1)n\). It does not even preserve the stability of the DAE system. This motivated us to modify the M"arz decomposition using special basis vectors as presented in papers \([3]\) and \([2]\) for the case of index-1 and index-2 respectively. Our decomposition leads to a decoupled system of the same dimension as that of the DAE system. Then we apply Krylov methods on the differential part and constructed subspaces to reduce the algebraic parts. In Sect. 2 we briefly discuss the IMOR method for index-2 systems (IMOR-2) more details can be found in \([3]\).

2 Index-aware MOR for index-2 systems

Assume Equation \((1a)\) is an index-2 system this implies \(\mu = 2\). We observed that for higher index DAEs there is a possibility of obtaining a purely algebraic decoupled system depending on the nature of spectrum of the matrix pencil \(\sigma(E,A) = \sigma_f(E,A) \cup \sigma_a(E,A)\), where \(\sigma_f(E,A)\) and \(\sigma_a(E,A)\) is the set of the finite and infinite eigenvalues respectively. This happens when matrix spectrum has only infinite eigenvalues, i.e. \(\sigma_f(E,A) = \emptyset\). Thus higher index DAEs can be decomposed into two ways. Due to space we are going to only discuss the case when \(\sigma_f(E,A) \neq \emptyset\) the other case can be found in our paper \([2]\). We now assume matrix pencil of Equation \((1a)\) has atleast one finite eigenvalue. We then construct basis vectors \((p,q)\) in \(\mathbb{R}^n\) with their inversion \((p,q)^T\) for the projectors \(P_0\) and \(Q_0\) respectively where \(p \in \mathbb{R}^{n,m}, q \in \mathbb{R}^{n,k_0}\). This leads to a theorem below.

Theorem 1. Let \(P_0 = p^T P_1 p, Q_0 = p^T Q_1 p,\) then \(P_0, Q_0 \in \mathbb{R}^{n_0 \times n_0}\) are projectors in \(\mathbb{R}^{n_0}\) provided the constraint condition \(Q_0 Q_0^T = 0\) holds.

Next, we construct another basis matrix \((p_0, q_0)^T\) in \(\mathbb{R}^{n_0}\) made of \(n_0\) independent columns of projector \(P_0\) and \(k_1\) independent columns of its complementary projector \(Q_0\) such that \(n_0 = n_0 + k_1\) and it’s inverse can be denoted by \((p_0, q_0)^T\). Then Equation \((1)\) can be decomposed as:
\[
\begin{align*}
\dot{z}_p &= A_p z_p + B_p u, \\
\dot{z}_q &= A_q z_p + B_q u, \\
\dot{q}_0 &= A_{q0} z_p + B_{q0} u + A_{q01} z_{q1}, \\
y &= C_p z_p + C_q z_{q1} + C_{q0} q_0,
\end{align*}
\]
where

\[
A_p := p_0^T P_0^T E_1 A_2 p_0 P_0, \quad B_p := p_0^T P_0^T E_1 B, \\
A_{q0} := q_0^T P_0 E_1 A_2 q_0, \quad B_{q0} := q_0^T P_1 E_2^{-1} B, \\
A_{q01} := q_0^T Q_1 P_0, \quad C_p := p_0^T P_0 C \in \mathbb{R}^{n_{q0}, \ell}, \\
C_q := T_{q01}^T P_0 C \in \mathbb{R}^{\ell_1}, \quad C_{q0} := q_0^T C \in \mathbb{R}^{\ell_0}.
\]

Equations (3a), (3b) and (3c) are of dimension \(n_{q0}, k_1\) and \(k_0\) respectively, where \(n := n_{q0} + k_1 + k_0\). System \(\dot{q}_0 = A_{q0} z_p + B_{q0} u\) preserves stability of the DAE system (1) since it can be proved that \(\sigma(A_p) = \sigma_f(E,A)\). If we take the Laplace transform of (3) and set \(s p(0) = 0\) then we obtain

\[Y(s) = [H_p(s) + H_{q1}(s) + H_{q0}(s)] U(s) + H_{q0}(0),\]

where \(H_p(s) = C_f^T (sI - A_p)^{-1} B_p, \quad H_{q1}(s) = C_f^T A_q (sI - A_p)^{-1} B_p + B_{q1}, \quad H_{q0}(s) = C_f^T A_q (sI - A_p)^{-1} B_p + B_{q0} \), and it’s orthornormal matrix is denoted by \(V_{q01} = \text{orth}(Y_{q01}), r \leq \min(r + 1)m, \dim(Y_{q01})\). We finally construct subspace \(Y_{q0} = \text{Span}\{Y_{Q1}, Y_{Q2}, Y_{Q3}\}\), where \(Y_{Q1} = A_{q0} V_{q0} + B_{q0} G_{01} (A_{q01} V_{q0}) + B_{q0} V_{q01}, Y_{Q2} = A_{q0} V_{q01}, Y_{Q3} = (A_{q0} + s_0 A_{q01}) V_{q0} + A_{q01} (A_{q01} A_{q01}) V_{q0} + A_{q01} B_{q1}\), and it’s orthornormal matrix is denoted by \(V_{q0} = \text{orth}(Y_{q0}), r_0 \leq \min(r + 2)m, \dim(Y_{q0})\). We can now use the orthonormal matrices \(V_{p1}, V_{q1}\) and \(V_{q0}\) to reduce the dimension of the subsystems (3a), (3b) and (3c) respectively as consequence the dimension of the decoupled system (3) is also reduced. Hence, if we substitute \(\xi_p = V_{p1} z_p, \xi_q = V_{q1} z_q, \xi_{q0} = V_{q0} q_0, 0\) into system (3) and simplifying we can obtain a reduced model of DAE system (1) which will call the IMOR-2 model.

3 Numerical results

We used an index-2 test system called S80PI1 in [5] which is a large power system RLC model. It’s a single-input single-output (SISO) system of dimension 4182. We applied the IMOR-2 method using \(s_0 = j0^3\). We obtained a reduced model of total dimension 219 as shown in Table 1. We observed that the magnitude of the transfer reduced model coincides with that of the original model at low frequencies with very small error as shown in Fig. 1. We have seen that the IMOR-2 method leads to very good reduced model and can be used on any index-2 system.

![Fig. 1. Magnitude of the transfer functions](image)

Acknowledgement. This work is funded by NWO.

References

Adaptive-order rational Arnoldi method for Maxwell’s equations

Matthias Bollhöfer¹ and André Bodendiek²

¹ TU Braunschweig, Institut Computational Mathematics, AG Numerik, Pockelsstraße 14, 38104 Braunschweig
m.bollhoefer@tu-bs.de
² TU Braunschweig, Institut Computational Mathematics, AG Numerik, Pockelsstraße 14, 38104 Braunschweig
a.bodendiek@tu-bs.de

Summary. We present some new results for model order reduction of Maxwell’s equations using an adaptive-order rational Arnoldi method. In this context, we introduce a new adaptive choice of expansion points.

1 Introduction

In view of the increasing frequency range and the progressing miniaturization, the analysis of parasitic effects has become an important task for the development of integrated circuits. The appearing phenomena, e.g. crosstalk or signal delay, are usually modelled using Maxwell’s equations. Since high-dimensional model problems are often necessary for accurate simulations, model order reduction techniques are an important tool for the proper and fast analysis of these phenomena.

1.1 Model Order Reduction

We will apply model order reduction for linear time-invariant descriptor systems

\[\mathcal{E} \dot{x}(t) = \mathcal{A} x(t) + \mathcal{B} u(t), \]
\[y(t) = \mathcal{C} x(t), \]

where \(\mathcal{E}, \mathcal{A}, \mathcal{B} \in \mathbb{R}^{n \times n}, \mathcal{C} \in \mathbb{R}^{p \times n} \). Furthermore, \(u(t) \in \mathbb{R}^m \) and \(y(t) \in \mathbb{R}^p \) denote the input and the output of the descriptor system, respectively. In general, descriptor systems are associated with the transfer function

\[\mathcal{H}(s) = \mathcal{C} (s \mathcal{E} - \mathcal{A})^{-1} \mathcal{B}. \]

The reduced order model will be obtained from the projection of the original model onto a proper subspace \(V_n \in \mathbb{R}^{N \times n} \) with \(n \ll N \), i.e.

\[V_n^T \mathcal{E} V_n x(t) = V_n^T \mathcal{A} V_n x(t) + V_n^T \mathcal{B} u(t), \]
\[y(t) = \mathcal{C} V_n x(t). \]

The computation of the subspace \(V_n \) should result in a small error

\[\| \mathcal{H}(s) - \hat{\mathcal{H}}(s) \| \]

in terms of a proper norm, where \(\hat{\mathcal{H}}(s) \) denotes the transfer function of the reduced order model.

2 Adaptive Krylov subspace methods

The idea of Krylov subspace methods for model reduction, e.g. \([1]\), results from the expansion of the transfer function

\[\mathcal{H}(s) = \sum_{j=0}^{\infty} Y^{(j)}(s_j)(s - s_j)^j, \]

where \(S := \{ s_1, \ldots, s_k \} \) denotes a given set of expansion points and \(Y^{(j)}(s_j) = \mathcal{C} X^{(j)}(s_j) \) with

\[X^{(j)}(s_j) = \left[-(s_i \mathcal{E} - \mathcal{A})^{-1} \mathcal{E} \right]^{j} (s_i \mathcal{E} - \mathcal{A})^{-1} \mathcal{B}. \]

The orthogonal columns of \(V_n \) span the same subspace as

\[\left[\begin{array}{c} X^{(0)}(s_1) \quad \ldots \quad X^{(j_1)}(s_1) \quad \ldots \quad X^{(j_k)}(s_k) \end{array} \right]. \]

In \([4]\), the authors present an adaptive choice for the size of the Krylov subspaces \(X^{(j)}(s_i) \) applying the rational Arnoldi method. Assuming \(Y^{(j)}(s_j) = \hat{Y}^{(j)}(s_j) \) for all \(j = 0, \ldots, j_1 - 1 \) and \(s_j \in S \), the Krylov subspace of the expansion point \(s_j \in S \) with

\[\max_{s_i \in S} \left| Y^{(j)}(s_j) - \hat{Y}^{(j)}(s_j) \right| \]

is increased by one additional vector in each iteration step. Here, \(\hat{Y}^{(j)}(s_j) \) denotes the \(j \)-th output moment of the reduced order model.

The remaining problem of the adaptive-order rational Arnoldi method (AORA) consists of the adequate choice of the expansion points.

3 AORA with adaptive point selection

We will present a combination of the AORA method and an adaptive expansion point selection. In detail, from the subsequently computed reduced order models using the AORA method new expansion points are determined, until a certain tolerance is reached. The aim of the adaptive expansion point selection consists of the computation of a reduced order model, which offers a good approximation for the whole frequency range.

For the definition of an adequate measurement of the
error \(e_m = \| \mathcal{H}(s) - \mathcal{H}_n(s) \| \), e.g. \([3]\), we define the approximation
\[
e_m = \sum_{i=1}^{m} 2^{i-m} \frac{\| \mathcal{H}_i(s) - \mathcal{H}_{i-1}(s) \|}{\| \mathcal{H}(s) \|}, \tag{2}
\]
where \(\mathcal{H}_{k-1} \) and \(\mathcal{H}_k \) denote transfer functions of reduced order models obtained from the AORA method. Since this definition does not give a hint, whether \(e_m \) remains small due to convergence or stagnation, we will add one more expansion point in each iteration step.

3.1 Point selection for Maxwell’s equations

Due to the high-frequency model problems with the frequency range \(\mathcal{I} = [f_{\text{min}}, f_{\text{max}}] \) the first two expansion points are always defined via \(s_1 = if_{\text{min}} \) and \(s_2 = if_{\text{max}}, \) where \(i \) denotes the imaginary unit. Furthermore, all expansion points are purely imaginary. Initially, we usually choose \(s_1 = if_{\text{min}}, s_2 = if_{\text{max}} \) and \(s_3 = (f_{\text{min}} + f_{\text{max}})/2 \) as the first set of expansion points \(S_0.\)

In the \((k+1)\)-th iteration step, the expansion point \(s_{k+1} = 2\pi f_{k+1} \) is determined, such that
\[
s_{k+1} = \arg \max_{s} \frac{\| \mathcal{H}_k(s) - \mathcal{H}_{k-1}(s) \|}{\| \mathcal{H}_k(s) \|}. \tag{3}
\]
Specially, the error during the \((k+1)\)-th iteration step \(S_3 \) is computed alternatingly on the intervals \(\mathcal{I}_1 = [f_{\text{min}}, (f_{\text{min}} + f_{\text{max}})/2] \) and \(\mathcal{I}_2 = [(f_{\text{min}} + f_{\text{max}})/2, f_{\text{max}}]. \) If the error for the given interval \(\mathcal{I}_1 \) or \(\mathcal{I}_2 \) is less than a given tolerance \(\delta > 0, \) we switch back to the other interval and determine a new expansion point. This new expansion point should have a certain distance to previous expansion points from this interval.

Finally, the algorithm terminates, if the global approximation error \(e_k \) reached a given tolerance or the error during the \((k+1)\)-th iteration step \(S_3 \) is less than \(\delta > 0 \) for both intervals \(\mathcal{I}_1 \) and \(\mathcal{I}_2. \)

4 Numerical results

Some numerical results are presented for a coplanar waveguide with a dielectric overlay, where the transmission line is surrounded by two layers of multilayer board. The single input, single output model problem is enclosed in a metallic box and deals with the frequency range \([f_{\text{min}}, f_{\text{max}}] = [0.6, 3.0] \) GHz.

Here, the discretization of the model problem was carried out using the Finite Integration Technique, e.g. \([5]\), with \(N = 32924 \) degrees of freedom.

Subsequently reduced order models \(\mathcal{H}_n(s) \) of dimension \(n = 30 \) have been computed until \(e_m < 10^{-12} \) applying the tolerance \(\delta = 7.0 \cdot 10^{-11}. \) The expansion points in the \(i \)-th iteration step are denoted by \(S_i. \)

![Relative error for Coplanar waveguide](image)

Fig. 1. Relative error for reduced order model with different sets of expansion points.

After four iteration steps the algorithm terminates due to the introduction of \(\delta > 0, \) where
\[
\max_{s} \| \mathcal{H}(s) - \mathcal{H}_n(s) \| \approx 1.5 \cdot 10^{-11}.
\]

Future results will comprise of the application of incomplete multilevel factorizations for the computation of Krylov subspaces, e.g. \([1]\), using previous preconditioning techniques for Helmholtz equations. Furthermore, existing adaptive expansion point selections, e.g. for machine tool simulations \([2]\), will be applied to Maxwell’s equations. In this context, a combination with the results from section \([3]\) might be adopted.

Acknowledgement. The work is supported by the German Federal Ministry of Education and Research (BMBF), grant no. 03MS613B.

References

Reduced Basis Modeling for Time-Harmonic Maxwell’s Equations

Peter Benner and Martin Hess

Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106 Magdeburg, Germany
benner@mpi-magdeburg.mpg.de, hessm@mpi-magdeburg.mpg.de

Summary. The Reduced Basis Method generates low-order models of parametrized PDEs to allow for efficient evaluation of parametrized models in many-query and real-time contexts.

We show the theoretical framework in which the Reduced Basis Method is applied to Maxwell’s equations and present first numerical results for model reduction in frequency domain.

1 Introduction

The Reduced Basis Method (RBM) generates low order models for the efficient solution of parametrized PDEs in real-time and many-query scenarios. The RBM employs rigorous error estimators to perform the model reduction and measure the quality of the reduced simulation. In recent years, the RBM has been developed to apply to a wide range of problems, of which [1] and the references therein, give an overview.

We address the use of the RBM in time-harmonic electromagnetic problems, which can exhibit parameter variations in geometry, material coefficients and frequency. We use the RBM in large 3D problems, that arise in the analysis of microscale semiconductor structures.

2 Model Problem

As an example model, we consider the coplanar waveguide, depicted in Fig. 1. The model setup is contained in a shielded box with perfect electric conducting (PEC) boundary. We consider three perfectly conducting striplines as shown in the geometry. The system is excited at a discrete port and the output is taken at a discrete port on the opposite end of the middle stripline. These discrete ports are used to model input and output currents/voltages.

2.1 Constitutive Equations

We consider the second order time-harmonic formulation of Maxwell’s equations in the electric field E

$$\nabla \times \mu^{-1} \nabla \times E + i \omega \sigma E - \omega^2 \varepsilon E = i \omega J \quad \text{in } \Omega, \quad (1)$$

subject to zero boundary conditions

$$E \times n = 0 \quad \text{on } \Gamma_{\text{PEC}}. \quad (2)$$

We use the weak formulation to (1) with bilinear form $a(\cdot, \cdot; \nu)$ and linear form $f(\cdot; \nu)$ as

$$a(E(\nu), v; \nu) = f(v; \nu) \quad \forall v \in X, \quad (3)$$

where $\nu \in \mathcal{D} \subset \mathbb{R}^p$ denotes the parameter vector, $E(\nu)$ is the parameter-dependent electric field, v a test function and X the $H(\text{curl})$-conforming finite element space, discretized with Nédélec finite elements.

All the model problems which are used in this work have been developed in the MoreSim4Nano project [3].

3 Reduced Basis Method for time-harmonic EM-problems

The aim of the RBM is to determine a low order space X_N of dimension N, which approximates the parametric manifold

$$M^\nu = \{ E(\nu) | \nu \in \mathcal{D} \} \quad (4)$$

well. Given such a space X_N, it is possible to gain accurate approximations $E_N(\nu)$ to $E(\nu)$ by solving (4) in X_N

$$a(E_N(\nu), v_N; \nu) = f(v_N; \nu) \quad \forall v_N \in X_N, \quad (5)$$
i.e. projecting \[^3\] onto \(X_N\).

An integral part in the model reduction are error estimators \(\Delta_N(v)\), which give rigorous bounds to the approximation error in the \(H(\text{curl})\) norm

\[
\|E(v) - E_N(v)\|_X \leq \Delta_N(v).
\] (6)

Additionally, the RBM requires to have fast evaluations of the error estimator in the sense that the complexity is \(O(N)\), i.e. independent of the large discretisation of the full model. The necessary requirement is an affine decomposition of the forms as

\[
a(E(v), v; v) = \sum_{q=1}^{O} \Theta^q(v) a^q(E(v), v).
\] (7)

3.1 Error Estimation

The error estimator in the field is given by

\[
\Delta_N(v) = \frac{\|r(\cdot; v)\|_{X'}}{\hat{\beta}_{LB}(v)},
\] (8)

with \(\|r(\cdot; v)\|_{X'}\) the dual norm of the residual and \(\hat{\beta}_{LB}(v)\) a lower bound to the inf-sup stability constant.

For error estimation in the output, the adjoint equation is solved to obtain the dual residual \(r^d(\cdot; v)\), such that

\[
\Delta_N^d(v) = \frac{\|r^p(\cdot; v)\|_{X'} \|r^d(\cdot; v)\|_{X'}}{\left(\hat{\beta}_{LB}(v)\right)^{1/2} \left(\hat{\beta}_{LB}(v)\right)^{1/2}},
\] (9)

gives rigorous bounds in the output. Here, \(r^p(\cdot; v)\) denotes the original, primal residuum.

3.2 Geometric Parameters

To consider the linear combination of snapshots for different geometries, the PDE is transformed from the parameter-dependent domain \(\Omega(v)\) to a parameter-independent reference domain \(\Omega(\bar{v})\).

Given a domain decomposition of \(\Omega(\bar{v})\), such that each domain under consideration can be found under affine transformations of the subdomains, the affine decomposition \[^7\] is possible and therefore allows the Reduced Basis model reduction.

4 First Numerical Results

The full simulation has been performed with the finite element package FEniCS using a discretization with first order Nédélec finite elements. For our first numerical experiments, we used a coarse discretization of 2048 degrees of freedom. To work with geometric variations, a larger resolution is required.

Fig. 2 shows the transfer function of the coplanar waveguide. In our simulations, we applied the RBM over the frequency range \([0.6, 3.0]\) GHz. The time-harmonic equations are already stated in the affine form \(^7\).

In Fig. 3, the relative approximation error for the order \(N = 30\) and \(N = 50\) are shown. In the case of \(N = 50\), the relative error is already below 0.01\%. Overall, the RBM achieves fast convergence in that the full model is approximated to machine precision with a space \(X_N\) of order 75 for the considered parameter range.

References

Electromagnetic Simulations in Power Electronic Converter Design

Didier Cottet, Stanislav Skibin, Ivica Stevanović, Bernhard Wunsch

1 ABB Switzerland Ltd., Corporate Research, Segelhof 1K, 5405 Dättwil, Switzerland, didier.cottet@ch.abb.com, stanislav.skibin@ch.abb.com, ivica.stevanovic@ch.abb.com, Bernhard.wunsch@ch.abb.com

Summary The energy efficiency trends in power electronic converter design are leading to increasing demands for faster switching devices with minimal switching losses. Consequences are electromagnetic design challenges such as parasitic stray inductances and high frequency impedance characteristics of passive components. The only way to systematically approach these challenges are dedicated methods for efficient electromagnetic simulation.

1 Introduction

Nowadays, power electronics plays a central role in the discussions on energy efficiency and is therefore gaining high attention in academic and industrial research. With the objective of improving the converter performance in terms of power quality, efficiency and cost, large progress is achieved in power semiconductors research. The consequences are that increasing blocking voltages, current switching capabilities and switching speeds, thus leading to very high dI/dt and dU/dt, and consequently to an increased complexity of EMI problems to be solved [1]. With the introduction of fast switching wide bandgap semiconductors (i.e. SiC and GaN), this trend will be even more significant [2].

In order to systematically address above EMI problems, dedicated simulation methodologies for power electronic converter design have been developed. Even though the basic power converter circuit topologies are very similar for the various applications, the components used and the electromagnetic effects observed are very different, thus demanding for dedicated numerical methods.

The methods discussed here include 3D field simulations, circuit simulations, semiconductors and passive components macro modeling and model simplification and acceleration methods.

2 Methodologies

One of the most relevant electrical design parameter in a power converter is the stray inductance in the power commutation loops [1]. 3D field simulations magnetic field patterns (Fig. 1), and current density distributions (Fig. 2), are therefore used to characterize and optimize the layouts of power modules [3] bus bars [4, 5] and PCBs for minimal stray inductance.

Fig. 1 Magnetic field patterns inside an IGBT power module.

Fig. 2 Current density distribution in planar multi-layer bus bar.

Fig. 3 Comparison of simulated and measured turn-off waveforms.
Extracted bus bar and PCB impedances are then used in circuit simulations to analyze the system switching behavior (Fig. 3) in the time and frequency domain [6, 7]. For that purpose, other system components also need to be modeled and added to the circuit. Most important components are the power semiconductors (IGBTs, diodes) [8] and passive components such as capacitors, chokes (Fig. 4) [9] or cables [10].

![Fig. 4 Equivalent circuit of 3-phase choke.](image)

Fig. 4 Equivalent circuit of 3-phase choke.

![Fig. 5 Comparison of measured and modeled common- and differential mode impedance of a 3-phase choke.](image)

Fig. 5 Comparison of measured and modeled common- and differential mode impedance of a 3-phase choke.

With increasing number and complexity of component models, the computation effort can become prohibitively large and memory demanding. Different acceleration methods have therefore been developed at system model level with divide-and-conquer approaches [7], at component model level with model order reduction [4] and at solver level using reluctance matrix methods [4].

3 Summary

In recent years, electromagnetic simulations have become a powerful tool for power electronic converter design. Major challenges have been to identify the appropriate numerical methods and to develop or adopt efficient simulation platforms and tools for the specific demands of power electronics. Today, the usage of simulations in actual product design is about to become standard, especially for IGBT power modules design, bus bar design and circuit simulation including electromagnetic macro models of active and passive components.

References

Summary. Numerical simulations of different physical design aspects of ABB distribution and power transformers are presented. The design aspects include stray loss assessment, dielectric insulation and thermal management. The simulations contribute to a better understanding of the operation of transformers, which allows to improve the transformer product development.

1 Introduction

In the present days, energy-efficiency is a paramount requirement in the life-cycle of power products, as it is mandatory for an ecological and economical operation of transmission and distribution networks. Important components of these networks are distribution and power transformers. Hence, a high energy-efficiency has to be targeted in the development and design of modern transformers.

Evidently, low power losses during operation are of particular importance to achieve a high energy-efficiency. However, according to life-cycle-assessment, low material usage for the production of transformers contributes further to highly energy-efficient devices. As a consequence, competitive transformer designs have to be as compact as possible, thus approaching the physical limits.

Power losses and compactness are mainly determined by the electric and the magnetic design of a transformer. A part of this is the dielectric insulation which clearly limits the compactness, because certain insulation distances have to be maintained to prevent failures by electric discharges. Moreover, the dissipated power losses heat up the transformer components during operation. The temperature rise within the device, which affects the power losses and limits the expected lifetime of the insulation, needs thus to be controlled by a thermal management.

To achieve competitive transformer designs considering the aforementioned aspects, numerical simulations have become a very significant tool in product development and optimization.

2 Electromagnetic Simulations

For magneto-quasistatic simulations in transformers, the commercial field solver MagNet is applied [1]. Its Finite-Element-Method formulation is based on hierarchical elements which allow to use shape functions of various polynomial orders in the same mesh [4]. In the frequency-domain, the magnetic vector-field \mathbf{H} in conductive domains,

$$\text{curl} \left((\sigma + i\omega\varepsilon)^{-1} \text{curl} (\mathbf{H}) \right) + i\omega\mu \mathbf{H} = 0, \quad (1)$$

and the scalar magnetic potential Ψ in non-conductive domains,

$$\text{div} \left(\mu (\mathbf{H} - \text{grad}(\Psi)) \right) = 0, \quad (2)$$

are the solved for. The angular frequency is denoted by ω, while μ and ε denote the permeability and the permittivity. In non-conductive domains, the magnetic field is computed by $\mathbf{H} = \mathbf{H}_s - \text{grad}(\Psi)$ with \mathbf{H}_s being a known source field. The resulting (non)-linear systems of equations are solved by standard methods, e.g. a Newton-Raphson scheme for linearization and a preconditioned Conjugate Gradient solver for the linear systems.

2.1 Stray Loss Assessment

Three-dimensional magneto-quasistatic simulations are applied e.g. for stray loss assessment of ABB transformers. For example, Fig. 1 shows the distribution of the stray losses on a dry-type transformer.

![Fig. 1. CAD model of a dry-type transformer (left), and the stray loss distribution on its structural components (right).](image_url)
Beyond this assessment, electromagnetic simulations are used to evaluate objective functions in the frame of multi-objective optimization schemes. An application of these schemes based on an evolutionary algorithm will be presented.

2.2 Dielectric Insulation

Standardized tests have to be passed in order to verify the dielectric insulation of real transformers, for instance the applied voltage (AC) test or the lightning impulse (LI) test. The prediction of test results for dry-type transformers requires an evaluation of the dielectric design criteria that are based on stages of the electric discharge in air, i.e. streamer inception, streamer propagation and leader transition [2].

Under the AC and LI tests, for example, streamer inception can be tolerated in small regions at sharp edges of the core or terminals as long as the streamer propagation criterion (based on clearances) is fulfilled [2]. But streamer inception cannot be tolerated in the weakly inhomogeneous field of the main duct between low- and high-voltage windings, unless complex barrier systems are used. To avoid inception, the following criterion must be evaluated using electrostatic field computations:

$$\int_S \alpha_{\text{eff}} (E) \, dx < \ln (N_c)$$ (3)

Here, \(\alpha_{\text{eff}}\) denotes the effective ionization coefficient w.r.t. the electric field magnitude \(E\). Inception does not occur if the integral along the discharge path \(S\) (typically computed as a field line) is smaller than the logarithm of the limit for electron generations \(N_c\). Applications of the dielectric criteria to transformer design will be presented in the extended version of the paper.

3 Thermal Simulations

One significant duty of the thermal management is to control the temperature rise of the windings, which originates from dissipated power losses. The higher the average temperature of the windings, the higher is their electric resistance, and thus the poorer is the energy-efficiency in operation. Furthermore, the lifetime of the transformer depends on the highest temperature in the windings.

The heat generated in the windings is transferred by conduction through the solid winding insulation. The heat is then taken away from the surfaces of the solid insulation by the insulation fluid (e.g. oil or air) via convection. The latter can be either forced or natural depending on whether the flow is driven by an externally imposed pressure gradient or by buoyancy effects, respectively.

Numerical simulations are applied to solve the physical models that govern the heat transfer mechanisms described above. The numerical thermal problem involves the solution of the Navier-Stokes equations in the fluid, the heat conduction equation in the solid parts and the radiation model for describing the radiating energy exchanged between mutually facing surfaces. As a result of the simulations, the spatial temperature distribution inside the transformer is determined. This simulation procedure has become possible recently for full three-dimensional transformer configurations by using state-of-the-art computational tools along with modern high-performance computers.

The simulation procedure was validated by comparing numerical results against measurements for a dry-type transformer winding prototype, where the conductors of the winding turns are casted in epoxy. The maximum deviation between simulation and measurements at the 31 sensor locations was less than 5%. The simulated temperature distribution is shown in Fig. 2.

![Fig. 2. Simulated temperature distribution of a dry-type transformer winding prototype cooled by natural convection.](image)

This validated procedure was applied to compute the temperature distribution of many transformer designs. Details on the application to a particular dry-type transformer will be presented.

References

Uncertainty Quantification from an Industrial Perspective

Albert Gilg1, Meinhard Paffrath1, and Utz Wever1

Siemens Corporate Technology, D-81739 Munich, Germany
Albert.Gilg@siemens.com, Meinhard.Paffrath@siemens.com, Utz.Wever@siemens.com

Summary. This presentation considers uncertainty quantification from an industrial perspective. Some successful methods in the field of stochastic optimization and reliability analysis as well as industrial applications are presented.

1 Content

Deterministic design optimization approaches are no longer adequate for the development of industrial high technology products. Product and process designs often push to the envelope of physical limits to improve performance. In this regime uncertainty originating from fluctuations during fabrication and small disturbances in system operations severely impacts product performance and quality. Design robustness becomes a key issue in optimizing industrial designs.

The design phase of a product or system is characterized by having no direct interaction with data. Here, the methods of uncertainty quantification try to predict confidence intervals for the behavior in the phase of operation. Also optimization and keeping quality limits for products and systems plays an important role in the design phase. Here, special stochastic optimization schemes and reliability analysis must be developed. For an industrial application they have to be designed such that as less function evaluations as possible are needed. The phase of operation is characterized by the interaction with data. For this phase a main task is the calibration of models with incomplete and noisy data. Here, the Bayesian concepts come into play.

We present challenges and solution approaches implemented in our robust design tool RoDeO applied to turbo charger design. In contrast to electricity generating turbines, turbo chargers have to work efficiently not only for one operating point, but for a wide range of rotation frequencies. High computation times for 3D aerodynamic (CFD) and mechanical (FEM) computations, for large sets of frequencies, are a severe limiting factor even for deterministic optimization procedures. Furthermore constrained deterministic optimization cannot guarantee critical design limits under impact of uncertainty during fabrication. Especially, the treatment of design constraints in terms of thresholds for von Mises stress or modal frequencies become crucial. We introduce an efficient approach for the numerical treatment of such absolute reliability constraints that even do not need additional CFD and FEM calculations in our robust design tool set.

A second application concerns the wheel set of a train. For this component (which is the most sensitive part of a train) a life cycle analysis is performed. In real life, such a component is faced by scattering outer impact and abrasion and thus, with a certain probability, the design leads to finite time fatigue resistance in spite it has been designed for infinite time. The underlying physics are the laws of fracture mechanics and crack growth. The failure criteria is the crack size exceeding a given length. The proposed stochastic method is in particular suited for CPU time intensive and large scale physical models. Based on these life time computations also inspection planning can be considered. In doing so we assume that all components are replaced if a crack is detected. The probability of detecting a crack during inspection is itself a random number. Knowing the costs for replacement of components, loss due to the outage during inspection etc., optimal inspection schemes can be derived.

An outlook for further design challenges concludes the presentation.
Uncertainty Quantification of Inrush Currents in Electric Machines with Respect to Measured Material Data

Sebastian Schöps12, Roland Pulch1, Andreas Bartel1, and Herbert De Gersem3

1 Chair of Applied Mathematics and Numerical Analysis, Bergische Universität Wuppertal, Gaußstraße 20, D-42119 Wuppertal, Germany \{schoeps,bartel,pulch\}@math.uni-wuppertal.de
2 Chair of Electromagnetic Theory, Bergische Universität Wuppertal, Gaußstraße 20, D-42119 Wuppertal, Germany
3 Wave Propagation and Signal Processing Research Group, KU Leuven, 8500 Kortrijk, Belgium herbert.degersem@kuleuven-kulak.be

Summary. The startup of most electrical machines exhibits a strong nonlinear behavior due to saturation. In practice, the underlying nonlinear saturation curve is modeled according to measurement data that typically contain errors. The electromagnetic fields and in particular the inrush currents inherit this uncertainty. In this paper, we propose a specific stochastic model (BH-curve) to describe uncertainties and we demonstrate the use of generalized polynomial chaos for the uncertainty quantification of these inrush currents. This requires time stepping of systems of nonlinear partial differential algebraic equations that result from the coupling of field and circuit systems.

1 Introduction

Efficient design of electric machines (transformers, actuators, generators etc.) requires insight into the device’s electromagnetic field distribution. Often, the available inputs, e.g. material data, include unknown errors for example due to measurements. The influence of these errors can be characterized by uncertainty quantification. In the mathematical models, the corresponding parameters are substituted by random variables to describe the uncertainties.

In this paper a transformer, modeled by the magnetoquasistatic approximation to Maxwell’s partial differential equations (PDEs), is considered. This system is coupled to a network model of an electric circuit given by a system of differential algebraic equations (DAEs). The coupling is necessary in order to simulate the startup phase where the highest inrush currents can be observed. To account for the measurement errors, the material curves include (random) parameters, such that the time-dependent solution of the PDAEs becomes a random process.

Uncertainties in the material parameters of magnetoquasistatic problems have been studied before but only considering linear material laws in frequency domain, e.g., \cite{2,3,11}. In this paper we do not propose to model the material laws as uncertain, but the underlying measurement data. This allows for a natural choice of the probability distribution.

The stochastic model can be solved by a quasi Monte-Carlo simulation, for example. We use the generalized polynomial chaos (gPC), see \cite{1,6,12}, in the numerical simulation to investigate how this approach behaves. A stochastic Galerkin method results in a larger coupled system of DAEs, cf. \cite{10}. To illustrate the modeling and the simulation, we discuss a 2D finite element discretization of a transformer.

2 Field Model

In the low-frequency regime the electromagnetic field, i.e., the eddy current problem, is typically described in terms of the magnetic vector potential \mathbf{A} (MVP), with magnetic flux density $\mathbf{B} = \nabla \times \mathbf{A}$, on a computational domain by the curl-curl equation

$$\kappa \frac{\partial \mathbf{A}}{\partial t} + \nabla \times (v \nabla \times \mathbf{A}) = \mathbf{J}_{\text{src}}$$

with conductivity κ and nonlinear reluctivity v. In our model, $v = v(\nabla \times \mathbf{A}, \mathbf{Y})$ may depend on random variables \mathbf{Y} to account for measurement errors. The system is equipped with boundary and initial conditions for \mathbf{A}. The material parameters are piecewise constant in all subdomains, only for ferromagnetic materials (e.g. the steel core in Fig.[1]) the Brauer model, \cite{4}, is chosen to account for nonlinear saturation

$$v(\mathbf{B}, \mathbf{Y}) = k_1(\mathbf{Y}) \cdot \exp(k_2(\mathbf{Y}) \cdot |\mathbf{B}|^2) + k_3(\mathbf{Y}),$$

where the model parameters k_i are fitted from measurement data and thus depend on the errors described by \mathbf{Y}.

Fig. 1: 2D model of a transformer, taken from \cite{9}.
The circuit coupling is established by identifying parts of the computational domain as branches in the circuit. Typically for coils the stranded conductor model is used and for massive bars the solid conductor model is feasible. In the case of a number of \(N_{\text{str}} \) stranded conductor models (i.e., spatially resolved field elements), the excitation from the circuit is imposed on the field by the source term

\[
J_{\text{src}} = \sum_{k=1}^{N_{\text{str}}} \chi_k i_k ,
\]

where the winding functions \(\chi \) spatially distributes the corresponding currents \(i \). To obtain current/voltage relations for each field element, additional coupling equations are needed, e.g.,

\[
\int_{\Omega} \chi_k \frac{\partial A}{\partial t} dV = v_k - R_k i_k \quad (k = 1, \ldots, N_{\text{str}})
\]

with the DC resistances \(R \) for the windings. Hence, given voltage drops \(v \), the system \([A] \) defines \(A, i \).

3 Uncertainties in the Measurement

The material parameter \(v \) is implicitly given by measurements of the BH-curve \((B_i, H_i) \), for \(i = 1, \ldots, N \). The Brauer material model \([2] \) can be fitted either by a nonlinear least squares algorithm, as e.g. in \([8] \), or less elegantly by selecting 3 measurement points and computing the reluctivity function that fulfills

\[
H_i = v(B_i) |B_i|
\]

exactly where we choose the points \(i = 1, 2, 3 \) without loss of generality, e.g. \([7] \). We follow the second approach to keep the parameter space small.

The field strength \(H \) is assumed to be affected by a measurement error:

\[
(B_i, H_i, Y_i) \quad \text{for} \quad i = 1, 2, 3
\]

where \(Y_i \) is normally distributed with mean \(\mu = 1 \) and standard deviation \(\sigma = 0.1 \).

We propose to quantify the impact of the perturbations above on the currents \(i \) in \([4] \) by the generalized polynomial chaos.

The transformer model as depicted in Fig.1 has been simulated for 100 realization of the above introduced normally distributed random variables. The results are shown in Fig.2. The uncertainties cause deviations of up to 20A in the primary inrush current.

In the full paper the computation of the expected values and the variance of the currents are discussed in more detail and using different uncertainty quantification techniques.

Acknowledgement. The work is partially funded by the BMBF Verbundprojekt SOFA (03MS648E). Also the Post-Doc funding of the Fachgruppe Mathematik at the Bergische Universität Wuppertal is acknowledged.

References

Dielectric Breakdown Simulations of an On-Load Tap-Changer in a Transformer Considering the Influence of Tap Leads and Windings

M. Wiesmüller1,2, B. Glaser1, F. Fuchs1, and O. Sterz1

1 Maschinenfabrik Reinhausen GmbH (MR), Falkensteinstr. 8, 93059 Regensburg, Germany
2 University of Applied Sciences Deggendorf, Edlmairstr. 6 and 8, 94469 Deggendorf, Germany

Summary. This paper reports on the simulation of an on-load tap-changer in a power transformer. The electric fields are computed and resulting breakdown voltages are estimated by using the streamer criterion. The environment of the on-load tap changer is taken into account by modeling tap leads in detail as well as transformer windings. The goal of the investigations is to justify standard design and test-procedures which assume a low dependency of the interior dielectric properties of the on-load tap-changer on the surrounding.

1 Introduction

On-Load Tap-Changers (OLTCs) are devices which permit the change of the turn ratios of transformers, allowing voltage regulation or phase shifting under load without interruption.

Power transformers equipped with OLTCs have been main components of electrical networks and industrial applications for nearly 80 years [2, 4].

One crucial criterion for the selection of an adequate OLTC for a certain transformer or application is its insulation level. Generally, the dielectric strength depends on the whole system, i.e. the transformer, as well as the connection-leads and the OLTC. However, usual test-procedures by OLTC manufacturers are not done within a transformer but on a separate OLTC. Also during design the influence of leads and windings on the internal OLTC insulation is usually neglected. This gives rise to further investigations justifying this approach. Therefore, a typical system is simulated by computing the electric field and breakdown voltages with and without windings and tap-leads.

2 Finite Element Simulation

For simulation half of the core and the tap windings of the transformer phase nearest to the OLTC are modeled. The OLTC itself is represented by its lower part—the tap selector. After several simplifications the CAD-data of the tap selector are directly imported into the simulation software [1]. The leads are created manually. Finally the transformer tank is built as a surrounding box.

Fig. 1. Magnitude of the electric field of the total arrangement. Red colored parts of the plot are above 1kV/mm.

Here, we consider AC stresses. Hence, the electric field is computed for the electrostatic case, i.e. we solve

\[\nabla \cdot (\varepsilon \nabla \phi) = 0 \quad \text{in} \: \Omega, \tag{1} \]

where Ω is the non-conductive domain, applying constant potentials $\phi = \phi_0$ on Dirichlet boundaries representing grounded and stressed electrodes and the transformer tank.

For the calculation 2nd order, isoparametric finite elements are used. The result of a computation with 22.6 million unknowns is shown in Fig.1.

3 Dielectric Breakdown Calculation

Breakdown in oil cannot be described by one coherent theory as in gas. To explain the main mechanisms two basic approaches are used: one is an extension of gaseous breakdown, the other one assumes that breakdown is caused by bridges of fibrous impurities.

To calculate the breakdown voltage in inhomogeneous electric fields different methods can be used, see e.g. [3,5]. The calculation method we use is based
on the streamer criterion along a critical path C

$$\int_C \alpha(\|E(x)\|) \, dl \geq k,$$

(2)

where α is the effective ionization coefficient, E the electric field and k defines the number of electrons necessary for breakdown. With an exponential equation for α and the introduction of a normalized electric field $e(x) := \|E(x)\|/U_b$, (2) can be solved as in [3] for the breakdown voltage

$$U_b = (1\text{mm})^{1/z} \left(\int_C \frac{e(x)}{E_0} \, dl \right)^{-1/z},$$

(3)

with constants $E_0 = 15\text{kV/mm}$ and $z = 4.2$. These constants are derived from measured breakdown data of uniform fields.

Fig. 2. A subset of evaluated critical lines in the tap selector

The streamer criterion (2) has to be evaluated along critical paths, which for breakdown in oil gaps are fieldlines starting at electrodes with high electric field stresses. Since the most critical fieldline does not necessarily start at a local field maximum many field-lines have to be evaluated, some of them are shown in Fig. 2. The most critical path and the associated U_b is determined by finding the minimum over all calculated voltages.

4 Influence of the Tap Leads and Windings

To investigate the influence of the transformer and the leads on the dielectric strength of the OLTC three different systems are simulated, see Fig. 3. Field values along several lines parallel to the tap selector axis are compared. In Fig. 4 field values along two of these lines are shown. One line represents a region with low, the other one a region with high electric stresses.

In regions with low fields there is a significant influence of the transformer and the leads, but in regions with high field stresses, which are critical concerning dielectric strength, the differences are maximum 10%. Regarding the calculated breakdown voltages the deviation is even less than 1%.

5 Conclusion

It has been shown that for the investigated typical example the influence of the transformer and the tap leads on the internal OLTC insulation is small enough to neglect them during design optimization and test-procedures.

Acknowledgement. The authors acknowledge discussions with D. Breitfelder and B. Bakija, Siemens AG, and thank for support of T. Strof, T. Manthe, J. Niesner, and B. Visser, MR GmbH.

References

Nonlocal hydrodynamic Drude model of nano-plasmonic optical devices

Lin Zschiedrich1, Kirankumar R. Hiremath2, and Frank Schmidt1,2

1 JCMwave GmbH, Berlin, Germany lin.zschiedrich@jcmwave.com
2 Zuse Institute Berlin (ZIB), Germany

Summary. As optical devices get much smaller than the wavelength of the operating light, local material models for metallic structures like the Drude model and the Lorentz model become inadequate to describe accurately the light-matter interactions. To overcome this, a sophisticated non-local hydrodynamic Drude model has been proposed. We discuss a weak formulation of the nonlocal hydrodynamic Drude model in the frequency domain and apply the finite element method for scattering and propagating mode problems to demonstrate the dramatic impact of non-local effects on the device characteristics.

1 Introduction

The dispersive material properties of plasmonic structures are usually described by the Drude model and the Lorentz model. These material models take into account spatially purely local interactions between electrons and the light. Recent investigations have shown that these local models are inadequate as the size of the plasmonic structure becomes much smaller than the wavelength of the exciting light [1, 2]. To overcome this, a sophisticated nonlocal material model is required, such as the hydrodynamic model of the electron gas [3].

The hydrodynamic model is formulated by coupling macroscopic Maxwell’s equations with the equations of motion of the electron gas. This gives rise to a hydrodynamic polarization current. Considering only the kinetic energy of the free electrons, it yields the nonlocal hydrodynamic Drude model, which is given in frequency domain by a coupled system of equations

\[\nabla \times \mu_0^{-1} (\nabla \times E) - \omega^2 \varepsilon_0 \varepsilon_{\text{loc}} E = i \omega \mathbf{J}_{\text{HD}}, \quad (1) \]
\[\beta^2 (\nabla \cdot \mathbf{J}_{\text{HD}}) + \omega (\omega + i \gamma) \mathbf{J}_{\text{HD}} = i \omega \omega_p^2 \varepsilon_0 \mathbf{E}, \quad (2) \]

where \(\mathbf{E} \) is the electric field, \(\mathbf{J}_{\text{HD}} \) is the hydrodynamic current, \(\varepsilon_{\text{loc}} \) is the relative permittivity due to the local-response, \(\beta^2 \) is a term proportional to the Fermi velocity, \(\gamma \) is the damping constant, and \(\omega_p^2 = \frac{e^2}{m_0 \varepsilon_0} \) is the plasma frequency of the free electron gas, c.f. [6, 7].

The hydrodynamic current is non-zero only in a region \(\Omega_m \) filled with metal. We assume that \(\Omega_m \) is bounded and contained in the computational domain \(\Omega \). Transparent boundary conditions such as PML (Perfectly Matched Layers) are required to model the coupling of the light field with the exterior domain [9].

2 Weak formulation

Appropriate Sobolev spaces for the electric field \(\mathbf{E} \) and the hydrodynamic current \(\mathbf{J}_{\text{HD}} \) are \(H(\text{curl}, \Omega) \) and

\[H_0(\text{div}, \Omega_m) = \{ \mathbf{J}_{\text{HD}} \in (L^2(\Omega_m))^3 | \nabla \cdot \mathbf{J}_{\text{HD}} \in (L^2(\Omega_m))^3, \mathbf{n} \cdot \mathbf{J}_{\text{HD}} = 0 \text{ on } \partial \Omega_m \}, \]

respectively. This restricts the hydrodynamic current to the metallic domain, and imposes a zero normal component on the boundary of the metal.

One can use textbook Nédélec finite element spaces to discretize \(H(\text{curl}, \Omega) \) and \(H_0(\text{div}, \Omega_m) \), leading to a consistent discretization of the problem, fulfilling the required boundary and material interface conditions [8, Ch. 5].

Special geometries such as \(z \)-invariant structures or with a rotational symmetry, can be treated as in the standard Maxwell case. This allows for the computation of plasmon-polaritons waveguide modes of a \(z \)-invariant structure on a 2D cross-section domain. In this case it is assumed that the electric field and the hydrodynamic current depend harmonically on \(z \):

\[\mathbf{E}(x,y,z) = \mathbf{E}(x,y) e^{ik_z z}, \]
\[\mathbf{J}_{\text{HD}}(x,y,z) = \mathbf{J}_{\text{HD}}(x,y) e^{ik_z z} \]

Replacing all \(z \)-derivatives in the coupled system (1), (2) with \(ik_z \) yields a quadratic eigenvalue problem for the propagation constant \(k_z \).

3 Numerical examples

3.1 Cylindrical plasmonic nanowires

We validate the present approach by simulating a test case of cylindrical nanowire as in [1], for which an analytical solution based on Mie theory is available.

Consistent with the observations in [1], peaks due to nonlocal interactions are present only beyond the bulk plasma frequency, c.f. Fig. 1. The positions of the surface plasmon resonance and the nonlocal hydrodynamic Drude resonances agree very good with the analytical Mie results.
3.2 V groove channel plasmon-polariton resonances

To demonstrate capability of the method to handle an arbitrary shaped geometry, we simulate a channel plasmon-polariton (CPP) waveguide with a V groove.

We consider a V groove configuration as shown in clip of Fig. 2. First we simulated it for the local Drude model. As seen from the dashed curve in Fig. 2, several resonance modes are excited. When this setting is simulated with the nonlocal Drude model, the mode spectrum changes significantly (solid-line curve). Some of the local Drude model modes such as at \(\omega / \omega_p = 0.306332 \) and \(\omega / \omega_p = 0.80262 \) experience small shifts towards high frequency, whereas others like at \(\omega / \omega_p = 0.466485 \) and \(\omega / \omega_p = 0.605087 \) undergo noticeable shifts towards high frequency. As in the case of the cylindrical nanowires, also for the V groove waveguide a completely new set of resonances appear at the frequencies beyond the plasma frequency. For the present simulation setting, some of these hydrodynamic resonance modes are more prominent than the higher order waveguide resonance modes. It gives the indication that the modal properties of the CPP waveguides change significantly with the inclusion of nonlocal effects.

Acknowledgement. This work is partially funded by the DFG (German Research Foundation) priority program 1391 “Ultrafast Nanooptics”.

References

Model order reduction for efficient battery electro-thermal simulation

Lucas Kostetzer¹ and Evgeny Rudnyi¹

CADFEM (Suisse) AG, Wittenwilerstrasse 25, CH 8355 Aadorf, Switzerland 1kostetzer@cadfem.de, erudnyi@cadfem.de

Summary. Battery finite element thermal model is reduced using moment matching method and coupled with electrical cell models at the system level in order to have accurate and fast simulation for designing management systems. A switching method between reduced order models is presented to evaluate different cooling conditions of the battery pack.

1 Introduction

Battery performance is direct related to operating temperature [1] due to influences in the electrochemical behavior, specially for Lithium ion types. High temperature can initiate exothermic side reactions that cause self heating, and a potential damage. At low temperatures slow diffusion of Lithium ions can cause saturations at the electrodes that results in higher internal electrical resistances [2], in other words power is influenced. Battery life is also affected by temperature. For calendar life (only storage), internal resistances can increase 30% more if temperatures are raised from 30°C to 55°C [3]. Hence an efficient and accurate thermal management is necessary.

For an electro-thermal battery model first we need a temperature dependent electrical battery model which is also capable to describe heat losses. Heat losses from a battery enter into the thermal subsystem where temperature distribution is evaluated. Temperature influences electrical properties of the battery as well as its power dissipation. The joint simulation of an electrical and a thermal subsystem can therefore be referred as electro-thermal simulation, Fig. 1. A practical problem is related to the fact that finite elements are usually employed to develop a thermal model of the battery pack. Such models are high dimensional and incompatible with system simulation as its transient simulation takes too much time. The development of a compact thermal model based on a finite element model is therefore necessary as an intermediate step.

2 Model Order Reduction

After the discretization of a finite element transient thermal model one get a system of ordinary differential equations in the following form:

\[E\dot{x} + Kx = f \] (1)

Where \(E \) is the heat capacity matrix, \(K \) is the heat conductivity matrix, and the state vector \(x \) contains the degrees of freedom, DOF, which for thermal problems are the node temperatures. For model order reduction, MOR, the concept of input/output is introduced. The load vector \(f(t) \) is divided in constant vectors \(b_i \) and in time functions \(u(t) \). Constant vectors transfer the time functions to specific degrees of freedom.

\[f(t) = \sum b_i u(t) \] (2)

At the system level there is no need of the complete state vector \(x \) but just a part of that, named \(y \). The relation between them is defined by the output matrix \(C \):

\[y = Cx \] (3)

The idea of model order reduction is to reduce the dimension of the state vector and preserve the dynamical behavior of the input/output relations [4]. Mathematicians and engineers developed [5] different techniques for model reduction and some of them use the projection idea

\[x = Vz + \varepsilon \] (4)

The projection matrix \(V \) approximates the state vector \(x \) with a few of degrees of freedom \(z \). Neglecting the approximation error \(\varepsilon \) the original state vector is described in the sub-space defined by matrix \(V \). The reduced order model is found by projecting the eq. [1] into the lower sub-space:

\[V^T E V z + V^T K V z = V^T B V u \] (5)

\[y = C V z \] (6)

Among existing methods, the present work focus in the moment matching via Krylov subspace. The moment matching means after transforming the dynamic
system into Laplace domain, in such that lower-order system have the same first derivatives in the Taylor expansion around expansion points. A particular Krylov subspace finds the projection and the reduced order model matches the first moments automatically.

In this work first we show how a thermal battery pack finite element model is reduced to system level and coupled with electrical battery cell model. Second we explore a model order reduction switching between two reduced models applied to the battery pack model.

3 Electro-thermal coupling at the system level

The battery pack thermal model contains four battery cells that are cooled by air flow. The model is 3D and build in ANSYS. Fluid channels are modeled with 1D elements (FLUID116) and coupled with the thermal elements by a convection boundary condition. For the reduced order model, ROM, inputs are defined as the heat generation per battery cell and outputs are the temperature at cell center. Fluid operation conditions are constant.

The model reduction is done with the tool MOR for ANSYS with 10 DOF’s per input resulting a dimension of 40 in the reduced model. The coupling is done with electrical cell model in a system level environment, ANSYS Simplorer [6], according to fig. 1.

The electro-thermal coupled model is then used to evaluate the battery thermal management in a more accurate way since more realistic temperatures are predicted by using the ROM. In the other side better heat generation loads can be calculated at the system level.

4 Switching reduced order models

One limitation of the battery pack reduced model in section 3 is a fixed fluid cooling velocity. In an active cooling a control system is necessary, and for that the ROM should have fluid velocity as input. One can solve this in two ways, by using parametric model reduction or by switching different reduced order models. We studied the second methodology.

The fluid velocity has two contributions in the model: convection transport of heat by the fluid (mass flow) and the heat transfer coefficient (convection BC). Both quantities after discretization are in the K matrix from eq. (1). In this context we generate one reduced model for each desired velocity (we assume all channels have the same velocity) and switch between the ROM’s at the system level.

At every switch event the reduced state variables z must be initialized and this is done based on the last value of the previous reduced model assuming the equality of the full state vector x from eq. (4) as the following:

$$V_{i}z_{i} + \epsilon_{i} = V_{ii}z_{ii} + \epsilon_{ii}$$

$$z_{ii} = V_{ii}^{T}V_{i}z_{i}$$

Results show that switch from a non-zero fluid velocity to a case with zero velocity is not successful since state variables from the two ROM’s at switching event have differences in the order of 30%. Behavior that may be explained by a too different K matrix, what makes the projection from eq. (8) not accurate enough.

When the change of fluid velocity is not to zero, but a value up 1000 times, the switching transition is successfully smooth with differences in the states vectors in the order of 0.05%. Absolute values are also good by comparing with the full solution obtained from ANSYS, see fig. 2. Differences are smaller than line thickness.

References

Metamaterial design for magnetic field shielding

Mustafa Boyvat1, Christian Hafner2
1,2 Electromagnetic Fields and Microwave Electronics Laboratory
Glorastrasse 35
CH-8092 Zurich
Switzerland

1 mustafa.boyvat@ifh.ee.ethz.ch
2 Christian.Hafner@ifh.ee.ethz.ch

Summary. Metamaterials, usually composed of large arrays of coupled resonators, have been studied mostly for high frequency applications. However, they provide an alternative to conventional shielding techniques at very low frequencies, i.e. 50-60 Hz. In this work, we show how to analyze and design such metamaterials and we evaluate the effect of the polarizabilities, the geometric arrangement and the number of resonators using quasi-static approximation to shield magnetic field.

1 Introduction

Metamaterials are artificial structures, which enable naturally unavailable electromagnetic properties and engineering of them. Metamaterials have been studied for years extensively, mostly aiming for optical frequency applications. However, metamaterials also have the potential to be used at very low frequencies, such as the shielding of magnetic field at power frequencies.

A metamaterial is usually composed of coupled resonators and shows complex behaviour. This complication brings the need for simulation and optimization tools. At very low frequencies, the resonators, which are the basic unit of metamaterials, are simple LC resonators formed by lumped circuit elements, i.e. inductors and capacitors. Shielding may be obtained mainly by the following mechanism: The incident magnetic field induces currents in the inductors which then loads the connected capacitors. In [1], it has been shown that it is possible to use metamaterials to shield magnetic field at very low frequencies.

In this paper, the effects of the polarizabilities and the geometric arrangement of resonators are analyzed for the shielding application whereas the number of LC resonators is considered as a parameter to be kept low, because of high costs.

2 Design

As shown in [1], metamaterials are naturally anisotropic materials and this gives the possibility to obtain high shielding factors. Electromagnetic properties of metamaterials such as effective permeability can be obtained by effective medium approximations. To be able to use effective medium approximations, there must be a high density of LC resonators in the metamaterial block. One of the discussed points in this work is that although decreasing the number of LC resonators prevents us from using these approximations, it is still possible to obtain high shielding factors. In this case, the metamaterial becomes a set of ‘meta-sheets’, as illustrated in Figure 1. The shielding of a meta-sheet of which the coil axes are oriented in the direction of the source magnetic field (i.e. x direction in Figure 1) is realized by opposing magnetic field produced by LC resonators. The shielding of such a sheet is shown in Figure 2. The LC resonators are ideal (no resistance) and the meta-sheet is inhomogeneous.

Figure 1: A meta-sheet, which is composed of LC resonators. B_0 shows the source magnetic flux density vector and is in x-direction where as the meta-sheet is in y-z plane.
3 Numerical Method

The LC resonators are modelled by current loops. The magnetic field of a current loop is given in [2]. The currents in LC resonators are obtained by equating the magnetic flux density to zero at some test points in the region to be shielded and this results in a linear matrix equation (see Equation (1)) [1]. B_{jk}^m is the k component of the magnetic flux density produced by the jth current loop with unit current at the ith test point. B_{m1} is the source magnetic flux density and I_j is the current in the jth loop.

\[
\begin{bmatrix}
B'_{11,x} & B'_{21,x} & \cdots & B'_{NL,x} \\
B'_{11,y} & B'_{21,y} & \cdots & B'_{NL,y} \\
B'_{11,z} & B'_{21,z} & \cdots & B'_{NL,z} \\
\vdots & \vdots & \ddots & \vdots \\
B'_{1M,x} & \cdots & \cdots & B'_{NM,x} \\
B'_{1M,y} & \cdots & \cdots & B'_{NM,y} \\
\end{bmatrix}
\begin{bmatrix}
I_1 \\
I_2 \\
\vdots \\
I_N \\
\end{bmatrix}
=
\begin{bmatrix}
-B_{o1,x} \\
-B_{o1,y} \\
\vdots \\
-B_{oM,y} \\
\end{bmatrix}
\]

(1)

By using more test points than necessary for the linear matrix equation, the problem turns into the optimization of vector C, which is formed by the currents in the loops (See Equation (1) and (2)) [1], [3].

\[
\min_C \frac{1}{2} \|BC - D\|_2^2
\]

(2)

Putting additional coils with axes are oriented in y and z directions, the shielding can be improved by also trapping the magnetic field, similar to the shielding by high permeability materials.

Figure 2: Shielding of an inhomogeneous meta-sheet. The color map shows the magnetic flux density in dB scale at $z=0$. The magnetic field source is a coil located at (0,0,0) and the meta-sheet is located at $x=50$ cm.

4 Conclusions

Metamaterials can be used to shield magnetic field at very low frequencies. The number of LC resonators can be decreased by using meta-sheets and the shielding characteristic can be improved by modifying polarizabilities and the geometric arrangement of resonators. A numerical method for the design of meta-sheets has been presented. Since this method is based on a linear matrix equation, it is efficient and fast.

Acknowledgement: We acknowledge the support of EWZ.

References

Friday, September 14
The Discontinuous Galerkin Method on Dynamical hp-Meshes

Sascha M. Schnepp1 and Thomas Weiland2

1 Graduate School Computational Engineering, Technische Universitaet Darmstadt, Dolivostrasse 15, 64293 Darmstadt, Germany schnepp@gsc.tu-darmstadt.de, thomas.weiland@temf.tu-darmstadt.de
2 Institut fuer Theorie Elektromagnetischer Felder, Technische Universitaet Darmstadt, Schlossgartenstrasse 8, 64289 Darmstadt, Germany

Summary. An hp-adaptive Discontinuous Galerkin method for time-domain electromagnetics problems is proposed. The method allows for arbitrary anisotropic refinements in the approximation order p and the mesh step size h regardless of the resulting level of hanging nodes. The adaptation process is guided by so-called reference solutions [14,15], which are employed for estimating the solution error and finding the best type of refinement.

1 Introduction

In this article, we are concerned with solving the Maxwell equations for electromagnetic fields with arbitrary time dependence in a three-dimensional domain $\Omega \subset \mathbb{R}^3$. They read

$$\nabla \times \mathbf{E}(\mathbf{x},t) = -\frac{\partial}{\partial t} \mathbf{\mu}(\mathbf{x}) \mathbf{H}(\mathbf{x},t), \quad (1a)$$

$$\nabla \times \mathbf{H}(\mathbf{x},t) = \frac{\partial}{\partial t} \mathbf{\varepsilon}(\mathbf{x}) \mathbf{E}(\mathbf{x},t) + \mathbf{J}(\mathbf{x},t), \quad (1b)$$

with the spatial variable $\mathbf{x} \in \Omega$ and the temporal variable $t \in [t_0,T] \subset \mathbb{R}$ subject to boundary conditions specified at the domain boundary $\partial \Omega$ and initial conditions specified at time t_0. The electric and magnetic field vectors are denoted by \mathbf{E} and \mathbf{H}, \mathbf{J} denotes the electric current density. In [1], we assumed resting heterogeneous, linear, isotropic, non-dispersive and time-independent materials. The magnetic permeability and dielectric permittivity μ and ε for this case are scalar values depending on the spatial position only.

For discretizing [1], we employ the discontinuous Galerkin (DG) method [12]. Nowadays, the DG method has gained wide acceptance as a numerical method, which combines the key features of accuracy and flexibility. Its flexibility stems from the highly localized character of the numerical approximation. This renders the method specially suited for time-domain problems as well as for applying adaptive mesh refinement. In particular, the method can easily deal with meshes with hanging nodes as stated in [3], which makes it particularly well suited for hp-adaptivity, i.e., the adaptation of the computational mesh regarding the local mesh step size h and the local approximation order p.

There is a well established body of literature on the DG method for various types of problems available. It has been thoroughly investigated by several research groups (see e.g. [5][8] and references therein). Concerning Maxwell’s equations in time-domain, the DGM has been studied in particular in [5].

This paper focuses on error controlled dynamic hp-adaptation. In parts, it is a continuation of our work in [13], where a general formulation of the DGM on non-regular hexahedral meshes was introduced. The first published work on h-, p- and hp-adaptivity within the DG framework is presumably [9], where the authors consider linear scalar hyperbolic conservation laws in two-dimensional space. For a selection of other publications see [10][12] and the references therein. Our formulation allows for arbitrary anisotropic h- and p-refinements with very relaxed demands on the level of hanging nodes.

2 Automatic and dynamic mesh adaptation with the DG method

The space and time continuous electromagnetic fields are approximated on a tesselation \mathcal{T} of the domain of interest Ω. The approximation of the electric field local to the element with index i reads

$$\mathbf{E}_i(\mathbf{x},t) = \sum_p \mathbf{e}_i^p(t) \varphi_i^p(\mathbf{x}), \quad \mathbf{x} \in \mathcal{T}_i \quad (2)$$

with the polynomial basis functions $\varphi_i^p(\mathbf{x})$ of order $p \in \mathcal{P} = \{0,...,P\}$ and the time-dependent vector of coefficients \mathbf{e}_i^p. The magnetic field is approximated respectively.

It is specific to the DG method that the basis functions are defined with element-wise compact support. As a consequence the individual element-local approximations are not trivially connected, which inherently leads to a globally discontinuous approximation. Element communication is established via the so-called numerical interface fluxes only, which appear in the form of element surface integrals in the weak formulation of [1] (see e.g. [13] for details). This high degree of localization turns mesh adaptation into a purely element-local operation.

By defining proper finite element spaces associated with refined or reduced elements of h-, p- and hp-type the best approximation in the L^2-sense, f^*, of
a DG approximation \(f\) given on an existing \(hp\)-mesh is obtained by the orthogonal projection operator \(\Pi^p\)

\[
f^*_p = \sum_p \Pi^p(f) \varphi^p_i = \sum_p \left(\left(\varphi^p_i, f \right) \right) \varphi^p_i,
\]

where \((u,v)_E\) denotes the inner product \(\int_E uv \, dx\) on the element \(E\). In [13] it is shown that this projection can be performed very efficiently, and that it guarantees stability by respecting the electromagnetic energy of the current field solution as a strict upper limit.

In order to perform automatic mesh adaptation, the approximation error has to be estimated in an element-wise fashion in a first step. In [13] an error estimator based the size of the interelement jumps of the DG solution was proposed. In a second step the best type of adaptation, i.e., \(h\)-, \(p\)- and \(hp\)-refinement and/or reduction, has to be determined. This information is inferred from a local regularity estimation.

In this contribution, we apply the concept of reference solutions [14][15]. A reference solution is a numerically computed approximation, which is assumed to be significant more accurate than the present approximation. This can be achieved by performing one isotropic \(h\)-refinement combined with increasing the approximation order by one on the element under consideration. The error of the present solution is computed with respect to the reference solution, which is also employed for finding the best refinement out of a list of candidates. Figure 1 shows an example of an anisotropically refined \(hp\)-mesh yielding an approximation error below \(10^{-9}\) in the \(L^2\)-norm. We adopted the common tensor product order visualization technique [14][15], where the color of a triangle including, e.g., an \(x\)-directed edge visualizes the order \(P_x\).

Acknowledgement. The work of S.M. Schnepp is supported by the ‘Initiative for Excellence’ of the German Federal and State Governments and the Graduate School of Computational Engineering at Technische Universität Darmstadt.

References

Optimal design of reflecting photonic structures for space applications
Nikolay Komarevskiy¹, Valery Shklov¹, Leonid Braginsky¹, Christian Hafner¹, and John Lawson²

¹ Swiss Federal Institute of Technology (ETH) Zürich, 8092 Zürich, Switzerland
n.komarevskiy@ifh.ee.ethz.ch, V.SHKLOVER@mat.ethz.ch, leonid.braginsky@mat.ethz.ch, christian.hafner@ifh.ee.ethz.ch
² MS-234-1, NASA Ames Research Center, Moffett Field, 94035 California, USA john.w.lawson@nasa.gov

Summary. During atmospheric entries, vehicles can be exposed to strong electromagnetic radiation from gas in the shock layer. We propose and analyze silicon carbide and glassy carbon structures to increase the reflection of radiation. We performed numerical optimizations of photonic structures using an evolutionary strategy. Among the considered structures are layered, woodpile, porous and guided-mode resonance structures. The role of structural imperfections on the reflectivity is analyzed.

1 Introduction

Practical applications of photonic crystals (PhCs) are diverse [1, 2]. An interesting, but not yet practically realized, application of PhCs is as radiation shields for atmospheric re-entry of space vehicles. Electromagnetic radiation from ionized gas in the shock layer can constitute up to 30-50% of the overall heat flux for lunar return trajectories, although for relatively short times. For Jupiter entries, on the other hand, most of the heating is radiative [3]. Therefore, in addition to protection against convective heating, a reentry thermal protection systems (TPS) should also be designed for radiation shielding. Ideally, the design should be tuned to the radiative spectra of a specific planet and specific entry conditions.

One of the easiest ways to design radiation shields for atmospheric re-entry is with layered media [5]. Provided the two constituent materials possess a sufficient dielectric contrast and low absorption, broadband radiation shields with high omnidirectional reflection can be designed [6]. However, applications such as atmospheric re-entry impose many additional constraints on the material properties (thermal, mechanical, etc.). Therefore, finding a suitable pair of materials can be very demanding.

Currently, TPS for the most demanding atmospheric re-entries are made of highly porous carbon based materials. These materials, for example, PICA (phenolic-impregnated carbon ablators), possess many of the required thermal and mechanical properties. However, these materials are strong absorbers of radiation and therefore currently offer no protection at all from radiative heating. On the other hand, if these materials could be structured in such a way that high reflection is obtained, radiative heating of the vehicle during re-entry could be reduced. We analyze the potential of glassy carbon and silicon carbide as radiation shields for Earth atmospheric re-entry. The effects of structural imperfections on reflectivity are also analyzed.

1.1 Optimization goal

The goal is to design a radiation shield that maximizes the total reflection of normally incident unpolarized radiation \(u_\nu \), shown in Fig. 1.

\[
\langle R_{u\nu} \rangle = \frac{\int R_{u\nu} d\nu}{u_{tot}}, \quad u_{tot} = \int u_\nu d\nu,
\]

(1)

where \(R_{u\nu} \) is the total reflection of the incident unpolarized radiation:

\[
R_{u\nu} = 0.5(R^s + R^p),
\]

(2)

where \(R^s \) and \(R^p \) are the sum of reflection efficiencies for the s- and p-polarization, respectively:

\[
R^{s,p} = R^{s,p}_0 + \sum D^{s,p}_i, \quad i = \pm 1, \pm 2, \ldots
\]

(3)

Here the summation is performed over the propagating diffraction orders in the upper air half space.

Fig. 1. (Red curve - experimental data of spectral radiation distribution, obtained at atmospheric re-entry relevant conditions [7] blue dashed curve - spectrum smoothed with Gaussian window function of full width \(\Delta f = 10 \text{ THz} \).
For numerical optimization, we used evolutionary strategy (ES) algorithms. Based on previous experience \cite{8}, it is very powerful for real parameter optimization problems and outperforms genetic algorithm, particle swarm optimization, and other methods in most cases. We used an \((m+n)\) evolutionary strategy with adaptive mutation for the optimization. Here \(m\) is the initial number of parents and \(n\) is the number of children created in each generation.

Some of the structures to be optimized are shown in Fig. 2.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{structures.png}
\caption{(From left to right: guided mode resonance structure, woodpile, porous-reflector)}
\end{figure}

Acknowledgement. This work was supported by ETH project 0-20590-09, Materials for Infra Red Protection.

References

Back-reflector optimization in thin-film silicon solar cells using 3D finite element simulations

Mark Blome1, Kevin McPeak2, Sven Burger1, Frank Schmidt1, and David Norris2

1 Zuse Institute Berlin, Germany blome@zib.de, burger@zib.de, frank.schmidt@zib.de
2 Optical Materials Engineering Laboratory, ETH Zürich, Switzerland kmcpeak@ethz.ch, dnorris@ethz.ch

Summary. We numerically optimize the light trapping efficiency of a periodic, pyramid structured back metal contact in thin-film amorphous silicon solar cells. Light propagation simulations are carried out by rigorously solving Maxwell’s equations in 3D space for a wide range of model geometry parameters. In using our optimization approach we have identified nanostructure back reflector geometries that display a significant increase in short circuit current density over flat back reflectors.

1 Introduction

Thin-film amorphous silicon based solar cells are an attractive design for providing cost-effective and efficient solar energy. Amorphous hydrogenated silicon (a-Si:H) can be deposited in thin layers on cheap substrate materials such as glass or plastic offering low fabrication costs suitable for mass production.

One of the major barriers to the widespread use of a-Si:H solar cells is their increased defect density under light exposure the Staebler-Wronski (SW) effect. To mitigate (SW) effects, low thickness absorber layers (in the range of a few hundred nanometers) that exhibit a high electric field are typically employed. Considering the large absorption length of amorphous silicon near its bandgap, these thicknesses necessitate light-trapping concepts for realizing efficient thin-film silicon solar cells [1].

2 Methodologies

Within this work we optimize geometry parameters of a periodic, pyramid structured back metal contact in a model (p-i-n type) thin-film solar cell. Our goal is to find optimal model parameters that considerably increase the solar cells light trapping efficiency compared to flat designs.

2.1 Finite element light propagation modeling

To judge the efficiency of different solar cell models we compute short circuit current densities

\[I_{sc} = \frac{q}{hc} \int_{\lambda_{min}}^{\lambda_{max}} \lambda \frac{QE(\lambda) S(\lambda)}{P_o} d\lambda \]

(1)

for the solar cell models under consideration. In (1) \(\lambda \) denotes the wavelength, \(q \) the elementary charge, \(\hbar \) is Planck’s constant, \(c \) is the speed of light and \(S(\lambda) \) is the weighted sun spectrum (air mass 1.5 solar spectral irradiance). For each solar cell model short circuit current densities are computed over a wavelength range of 350 to 900 nanometers.

Estimating \(I_{sc} \) requires knowledge about the solar cells quantum efficiency \(QE(\lambda) \) defined as the ratio of the number of generated charge carriers to the number of total incident photons:

\[QE(\lambda) = \frac{1}{P_o} \int 1/2cn \frac{4\pi k}{\lambda} |E(\lambda, r)|^2 dr \]

(2)

Here \(P_o \) is the optical input power, \(n \) and \(k \) are the real and imaginary parts of the complex refractive index and integration is carried out in the intrinsic a-Si solar cell layer.

\(E(\lambda) \) in (2) is the electric field in the solar cells absorber layer, which, considering the involved length scales, needs to be computed by rigorously solving Maxwell’s equations. For this purpose we employ a frequency domain finite element method. To assure
a high solution accuracy we use higher order shape functions and adaptive perfectly matched layers for realizing transparent boundary conditions [4].

2.2 Model discretization using CAD techniques

To avoid discretization errors that would pollute the finite element solutions, investigated solar cell geometries need to be modeled and discretized with high accuracies. Furthermore, to be able to apply optimization algorithms for finding optimal back reflector geometries, it is essential that solar cell geometry models can be fully parameterized. For this purpose we have developed computer-aided design (CAD) techniques specifically tailored for the construction of parameterized nano-photonic device models.

A sample CAD representation of our model (p-i-n type) solar cell is displayed in Fig. 1. It consists of a nano-structured silver back contact deposited on a plastic substrate, followed by 50 nm of Al:ZnO, 200 nm of a-Si:H and a final layer of tin doped indium oxide. Edge rounding (fillet) is applied on sharp edges of the model geometry to avoid spurious reflections. The CAD model is parameterized by the period of the structure (in x,y directions) and the base width of the pyramids. In addition to these parameters other geometry parameters are currently being investigated.

A hybrid meshing scheme is used to discretize the model geometries with high quality structured/unstructured tetrahedral cells. The periodicity of the computational domain is automatically enforced during volume meshing and prismatic cells are added for realizing transparent boundary conditions with perfectly matched layers (Fig. 1).

So far material interface layers within the solar cell stacks are modeled by extrusion of the pyramidal structured PET-Ag interface layer in positive Z-direction (as displayed in Fig. 1). To achieve a more accurate representation of the topography of the individual material layers, a level-set based topography simulation method is currently being developed. The method relies on the ballistic transport and reaction model developed by [2] and employs the level-set method to evolve interface layers [3].

3 Results

Our simulation results reveal that the employed pyramidal structured back-reflectors effectively increase the light path in the absorber by (i) exciting photonic waveguide modes in the absorber and (ii) coupling incident photons to surface plasmon polaritons (SPPs). Using our optimization approach, we have identified nanostructure back reflector geometries that display a significant increase in short circuit current densities compared to a flat solar cell design with identical material layer thicknesses.

Fig. 2. Short circuit current densities I_{sc} computed for a series of solar cell models with varying cell periodicities and pyramid base widths. Displayed I_{sc} values are considerably larger than the value obtained for a flat back-reflector ($I_{sc} = 10.2 \text{ mA/cm}^2$).

Fig. 2 shows a map of computed short circuit current densities I_{sc} for a series of solar cell models with varying cell periodicities and pyramid base widths. A maximum value of $I_{sc} = 15.68 \text{ mA/cm}^2$ was identified for a solar cell model with a periodicity of 480 nm and a pyramid base width of 450 nm, which is considerably larger than the value obtained for a flat back-reflector ($I_{sc} = 10.2 \text{ mA/cm}^2$). Additional model parameters are currently being investigated. Furthermore, other type of back-reflector geometries are going to be analyzed in the framework of this ongoing research project.

Acknowledgement. The research presented here is the result of a multi-disciplinary, collaborative project headed by K. McPeak (OMEL, ETH Zürich). In addition to the authors of this abstract, the project relies on the work and contributions of: T. S. Cale (Process Evolution Ltd.), N. Wyrsch (EPFL, Lausanne) and M. Hojeij, Y. Ekinci (Paul Scherrer Institut).

References

Derivation and test of high order fluid model for streamer discharges

Aram Markosyan1, Saša Dujko1,2, and Ute Ebert1,3

1 CWI, P.O. Box 94079, NL-1090 GB Amsterdam, Netherlands Aram.Markosyan@cwi.nl
2 Institute of Physics, P.O.Box 68, 11080 Zemun Belgrade, Serbia sasha@phy.bq.ac.yu, S.Dujko@cwi.nl
3 Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands Ebert@cwi.nl

Summary. A high order fluid model for streamer dynamics is developed by closing the system after the 4th moment of the Boltzmann equation in local mean energy approximation. This is done by approximating the high order pressure tensor in the heat flux equation through the previous moments. Mathematical characteristics of the system is studied. Then planar ionization fronts for negative streamers in \(N_2 \) are simulated with the classical streamer model, MC-PIE particle model, and with the present higher order model.

1 High order fluid model

Streamer discharges occur in nature and as well in many industrial applications such as the treatment of exhaust gasses, polluted water or biogas. They appear when non-ionized or lowly ionized matter is exposed to high electric fields. Here we present a high order fluid model for streamer discharges, and we use it to simulate planar ionization fronts for negative streamers in nitrogen under normal conditions; and we compare the results with those of the classical fluid model.

1.1 Model description

The high order model is derived by taking the first 4 moments of the Boltzmann equation, i.e., by multiplying the Boltzmann equation with the \(k \)th power of velocity \((k = 0,1,2,3)\) and integrating over velocity space. In principle, the set of moment equations is infinite, but we consider only electron density \((k = 0)\), momentum \((k = 1)\), energy \((k = 2)\) and energy flux \((k = 3)\). The system is truncated in the energy flux equation \((4)\) by approximating the high order pressure tensor by the product of lower order moments and by introducing factor of parametrization \(\beta\). As a result the hydrodynamical formalization of the streamer dynamics in 1D is described by the nonlinear system of equations

\[
\partial_t \mathbf{u} + \mathbf{A}(\mathbf{u}) \partial_x \mathbf{u} = \mathbf{F}(\mathbf{u}),
\]

where the primitive variables are

\[
\mathbf{u} = (n, \rho, \rho e, n e^2) \text{T},
\]

the matrix \(\mathbf{A}(\mathbf{u})\) is defined in following way

\[
\mathbf{A}(\mathbf{u}) = \begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & \frac{3}{m} & 0 \\
0 & 0 & 0 & 1 \\
-\beta \frac{3e^2}{3m} & 0 & \beta \frac{4e}{3m} & 0
\end{pmatrix},
\]

and the source term is

\[
\mathbf{F}(\mathbf{u}) = \begin{pmatrix}
nv_f \\
qEnv - n \{ \nu_e \{ \varepsilon - \frac{1}{3}kT_0 \} + \sum \alpha \nu_{eq} e_{eq} + \nu_I \varepsilon \} \\
\frac{3T}{5m} n_0 - \nu_m e - \nu_e e_m
\end{pmatrix},
\]

Here \(n, \nu, \varepsilon\) and \(\bar{\xi}\) are electron number density, average electron velocity, average electron energy and electron energy flux, correspondingly. \(E\) is the electric field and \(T_0\) is room temperature. \(\nu_m(\varepsilon)\) and \(\nu_e(\varepsilon)\) are the momentum and elastic energy transfer collision frequencies, \(\nu_I(\varepsilon)\) is the ionization frequency and \(\nu_{eq}(\varepsilon)\) are the collision frequencies for inelastic processes. As charge is conserved, the continuity equation for the ion density \(n_{ion}\) is

\[
\partial_t n_{ion} = n \nu_I,
\]

when the ions are approximated as immobile. Space charge effects are taken into account through the Poisson equation

\[
\partial_x E = \frac{e}{\varepsilon_0} (n_{ion} - n),
\]

where \(\varepsilon_0\) is the dielectric constant and \(e\) is the elementary charge.

Mathematical characteristics and numerical solution of the system

Lemma 1. The system \((1)\) is hyperbolic if and only if

\[
\beta = 0 \quad \text{or} \quad \beta \geq 1.
\]

In the case of \(\beta > 1\), the system \((1)\) is strictly hyperbolic.

Although the eigenvalues of \((1)\) have a simple form, the corresponding right and left eigenvectors are very complicated, which makes it impossible to work with them.
The finite volume method is used to spatially discretize the system \((1),(5),(6)\) on uniform control volumes or cells \(V_j\) as follows:

\[
V_j := [j\Delta x, (j+1)\Delta x), \quad x_j := \left(j + \frac{1}{2} \right) \Delta x, \quad (8)
\]

where \(j = 0, 1, \ldots, M - 1\), \(\Delta x = L/M\) is the spatial grid size and \(L\) is the length of the simulation domain. To approximate the spatial derivative in \((1)\) we use the second-order central difference discretization \((1)\). In our numerical experiments we saw that this spatial discretization approximates quite well the analytically predicted front velocity for the minimal model \((2)\).

The time derivatives are approximated with the Runge-Kutta 4 method \((1)\). This is an explicit method, which always has a bounded stability domain. In our case the stability condition or CFL restriction is

\[
\beta \sqrt{\frac{2}{3m}} \max \frac{\Delta t}{\Delta x} \leq C, \quad (9)
\]

where \(C\) depends on the particular method and space discretization. In our simulations we use the value \(C = 0.1\).

1.2 Particle model and classical fluid model

In essentially all numerical fluid models for streamers in the past 30 years, except for \((3),(4)\), the electron density is approximated by a reaction drift diffusion approximation

\[
\partial_t n = \partial_i (\mu E n + D \partial_i n) = n v_f, \quad (10)
\]

This model is called the minimal model; it implies a local field approximation of reaction and transport coefficients.

As a second reference model we use the MC-PIC particle model from \((5)\).

2 Results and discussion

Fig. 1 compares the results of the high order model, the particle model and of the minimal model for the same initial and boundary conditions and for the same electric field ahead of the ionization front. A multi term theory for solving the Boltzmann equation \((6)\) is used to calculate flux transport coefficients and mean-energy dependent collisional rates required as an input in fluid equations.

The following main conclusions can be drawn:

1) The overall front structure is the same, but the particle model is much better approximated by the high order model than by the minimal model.

2) That the mean electron energy ahead of the front increases while the electric field is constant, was also seen in Monte Carlo simulations before \((2)\), but not yet included in fluid models. The mean electron energy behind the front where the electric field vanishes, is close to 1 eV, because energy relaxation is slow in this region. This feature was not included in fluid models before.

In summary, the new high order fluid model captures effects in streamer simulations that up to now were only inherent in the more microscopic Monte Carlo simulations. This is a step forward for long time calculations.

Acknowledgement. Aram Markosyan acknowledges support by STW-project 10751.

References

Electro-hydrodynamic numerical modelling of corona discharge

D. Cagnoni1,2, F. Agostini1, T. Christen1, C. de Falco2, N. Parolini2, and I. Stevanovi1

1 ABB Switzerland Ltd., Corporate Research, CH-5405 Baden-Dättwil, Switzerland
2 Dipartimento di Matematica “F. Brioschi”, Politecnico di Milano, via Bonardi 9, 20133 Milano, Italy
ivica.stevanovic@ch.abb.com

Summary. Prediction of cooling by forced convection due to corona-induced ion flow in an electro-hydrodynamic (or EHD) simulation requires a reliable corona electrode model, which has to be formulated as a boundary condition (BC) to the EHD partial differential equations. We discuss and compare four different BCs in the context of finite-volume methods (FVM). It turns out that the optimum choice depends on the given physical information.

1 EHD differential and numerical model

Corona discharge refers to field induced gas ionization near an electrode, e.g., a thin wire (emitter), in series with the dark discharge associated with the ion drift towards counter electrodes (collector). The ion motion induces a drag of the neutral gas, and can be used to cool convection heat a source, which may be the collector at the same time. The associated equations consist of the Poisson equation for the electric potential ϕ, and the balance equations for the densities for ion number N_p, mass ρ, momentum ρv, and energy (written in terms of the temperature T). In the Boussinesq approximation, they read

\begin{equation}
\frac{\partial N_p}{\partial t} = -\nabla \cdot (\varepsilon \nabla \phi) - q N_p \tag{1}
\end{equation}

\begin{equation}
\frac{\partial \rho v}{\partial t} = \nabla \cdot \left(\frac{p}{\rho} \mathbf{v} \cdot \mathbf{x} \right) + \mathbf{f}_B + \mathbf{f}_{\text{EHD}} \tag{2}
\end{equation}

\begin{equation}
\rho C_v \frac{DT}{Dt} = k \Delta T + j \cdot \mathbf{E} - \mathbf{f}_{\text{EHD}} \cdot \mathbf{v} \tag{3}
\end{equation}

where ε is the electric permittivity, q the ion charge, $\mathbf{E} = -\nabla \phi$ the electric field, b the ion mobility, a the diffusion constant, $\mathbf{f}_B = \frac{\partial \phi}{\partial t} + \mathbf{v} \cdot \nabla \cdot \mathbf{f}_{\text{EHD}}$ the material derivative for the velocity field \mathbf{v}, ν the viscosity, p the pressure, \mathbf{f}_B the gravitational acceleration, $\mathbf{f}_{\text{EHD}} = q N_p \mathbf{E}$ the Coulomb force, assumed to be distributed over all gas particles via scattering. The electric current density j consists of drift, convection, and diffusion currents.

The system of coupled, nonlinear PDEs has to be solved for given initial and boundary conditions. Prior to discussing the latter, we summarize the global solution procedure. First, in a Gauss-Seidel-like approach, the solution is determined progressively for the block $\phi - N_p$, then for the block $p - v$ and finally for T. Because of the weak influence of each block to the preceding ones, only one iteration per time step is performed. Electrostatics equations are solved with nonlinear formulation to reach convergence (for details, see [2]) while Navier-Stokes block is solved via a SIMPLE-like projection method ($\lambda(v)$ being a coefficient depending on both the estimated velocity and the grid). Here we sketch how this iteration is built:

- until $I_\Omega(N_p^{(k-1)} - \phi^{(k-1)} - N_p^{(k)}) < \text{tol.}$
- until $\|\phi^{(k,n-1)} - \phi^{(k,n)} - N_p^{(k)}\|_\infty < \text{tol.}$
- solve $-\nabla \cdot (\varepsilon \nabla \phi^{(k,n)}) = q N_p^{(k-1)} \varepsilon \phi^{(k,n)} - q N_p^{(k-1)}$, linearized around $\phi^{(k,n)}$
- solve $q \frac{\partial \phi^{(k,n)}}{\partial t} = -\nabla \cdot \left(j \phi^{(k,n)} N_p^{(k)} \right)$
- solve momentum equation (4) for $\mathbf{v}^{(0)}$
- until $I_\Omega \nabla \cdot \mathbf{v}^{(j)} < \text{tol.}$
- solve $-\nabla \cdot (\lambda^{(j-1)} \nabla \mathbf{v}^{(j)}) = \nabla \cdot \mathbf{v}^{(j-1)}$
- correct $\mathbf{v}^{(j)} = \mathbf{v}^{(j-1)} - \lambda^{(j-1)} \nabla \mathbf{v}^{(j)}$
- solve temperature equation (5)

2 Corona discharge boundary conditions

We restrict our discussion to the BC for N_p at the corona electrode, comparing four different BC types. For the rest of the boundaries, instantaneous recombination BC ($\mathbf{n} \cdot \nabla N_p = 0$) is applied at counter electrodes, while in all other cases well-known standard BCs can be used.

The first approach we present is the natural condition, namely imposing the normal flux j_n associated to (2) to be uniform; this approach is very accurate when geometry is symmetric and one knows the actual current from measurments, but has the drawback of being totally unpredictable. Nonetheless, this approach is sometimes used with arbitrary geometries, defining an active surface that emits the necessary current density.

The generally accepted Kapcso’s hypothesis (see [5]) states that $\mathbf{E}_n := \mathbf{n} \cdot \mathbf{E} = E_{\text{on}}$, namely the field remains constant at the (virtual) electrode once the corona discharge is triggered. A value for E_{on} can be computed from Peek’s law (see e.g. [3], ch. 4) and allows to define the active region as the part of the boundary where $E_n > E_{\text{on}}$ holds.

For having a predictive condition, instead, one needs to somehow enforce a constitutive law linking
j_n or N_p with E_n. We choose to adopt the second, simpler formulation, namely to impose $F_1(E_n, N_p) = 0$ to be satisfied on the boundary. Our first approach, given in [11], is based on a simplified physical model of the virtual contact which takes into account charge carriers injected solely from the active surface (with a saturation current density $j_{sat}H(E_n - E_{on})$, where $H($)$ is the Heaviside step function), and backscattered carriers (with current density given by $-qN_p w$ at the contact, where w is a characteristic velocity). Neglecting diffusion current at the electrode, this approach can be interpreted as imposing the relation

$$F_1(E_n, N_p) = qN_p(bE_n - w) - j_{sat}H(E_n - E_{on}) = 0$$

(6)

Choice for the parameters j_{sat} and w needs to guarantee that the injected charge can naturally force $E_n = E_{on}$, otherwise current density saturates to $j_n = j_{sat}$ and space charge controlled current (SCCC) regime is not reached anymore.

Our second approach is to model the boundary as an ideal rectifying diode, in which no ion density is flowing under the E_{on} threshold, while every N_p value is possible when $E_n = E_{on}$. Explicitly, this approach is equivalent to enforcing the following:

$$F_2(E_n, N_p) = N_p \left(1 - \left(\frac{E_n}{E_{on}}\right)^\beta\right) = 0$$

(7)

$\beta \in [0, 1]$ being a smoothing factor. This relation strongly enforces both N_p to vanish in the other non active portion of the electrode, and E_n to match E_{on} in the active portion.

Our last approach assumes a constitutive relation which is a more regular version for the former one,

$$F_3(E_n, N_p) = N_p - N_{ref} \left(\exp\left(\frac{E_n}{E_{ref}}\right) + 1\right) = 0$$

(8)

where N_{ref} and E_{ref} are a device-off ion density and a reference electric field. The choice of these two values can thus be made independently from the particular case (using e.g. air conductivity for N_{ref}).

3 Results and conclusions

As examples, a wire-to-grid geometry [4] and a wire-to-plate geometry [3] have been investigated (Fig. 1).

The former consists of a duct with a grounded grid in the middle (both collectors), and an emitter placed upstream. The E_{on} value is determined from the experimental onset voltage (4 kV). Simulations show how the natural condition matches exactly the experimental value, and the iterative condition as in [7] still captures well the electrical behavior. One may thus consider that in cases like this, even when lacking measured currents, the ideal diode model is still appropriate.

The latter geometry has a heated plate with a collecting stripe and the emitter is lifted from the plate. As shown in Fig. 3 this case is not as well reproduced as the former, due to the highly nonuniform E_n on the electrode. This issue may be solved with a parameter optimization, which has not yet been undertaken in the present study. The current, being the most influential parameter for for the fluid dynamics and thermal computing, was predicted with acceptable accuracy.

References

Efficient Simulation of Frequency-Transient Mixed Co-Simulation of Coupled Heat-Electromagnetic Problems

Christof Kaufmann¹, Michael Günther¹, Daniel Klages², Jan ter Maten¹, Matthias Richwin², Sebastian Schöps¹

¹ Bergische Universität Wuppertal, Wicküler Park, Gaußstraße 20, D-42119 Wuppertal
{kaufmann,schoeps,guenther,termaten}@math.uni-wuppertal.de
² Leopold Kostal GmbH & Co. KG, Hauert 11, 44227 Dortmund, {d.klagges,m.richwin}@kostal.com

Summary. This paper discusses an efficient mixed mode simulation method for induction heating problems. For time-harmonic electromagnetic fields that transport large amounts of energy, even small power losses can result in considerable heating up. The skin effect causes most heat generation at material boundaries. Hence the temperature considerably influences the material parameters, e.g. the electric conductivity, and thus the electromagnetic fields. This underlines the need for a mutual coupling of the heat and electromagnetic field models.

A transient simulation of the coupled problem often suffers from relative small time steps due to high frequencies in the electromagnetic part. However, heating up is a comparatively slow effect. Therefore simulations of large time intervals are necessary. The small time steps in combination with long time intervals induce high computational cost or make a simulation even infeasible. It is beneficial to reduce the computational effort for solving the electromagnetic problem. In this paper we discuss an adapted model that allows for a mixed formulation: frequency domain analysis of the EM problem and time domain for the heat problem. This approach is similarly implemented in COMSOL Multiphysics. We focus on numerical analysis in the framework of dynamic iteration.

An model example from industry is used for numeric results. KOSTAL describes with that the power transfer by induction for an inductive charging station. It will be used to charge batteries of electric cars.

2 Modelling

Electromagnetic fields are mathematically described by a system of time-dependent partial differential equations on a domain Ω. It reads in curl-curl formulation:

\[\varepsilon \frac{\partial^2 \mathbf{A}}{\partial t^2} + \sigma(T) \frac{\partial \mathbf{A}}{\partial t} + \nabla \times (\mathbf{v} \nabla \times \mathbf{A}) = \mathbf{J}_e, \] (1)

where the reluctivity \(\varepsilon \) and the permittivity \(\sigma \) depend only on space \(\mathbf{r} \in \Omega \), the electrical conductivity \(\sigma \) also on temperature \(T \), the external current density \(\mathbf{J}_e \) is a given sinusoidal source and the magnetic vector potential \(\mathbf{A}(t) \) is unknown on \(t \in [0,t_e] \). For brevity the space dependency \(\mathbf{r} \) is always neglected. On the other hand we have the heat equation

\[\rho c \frac{\partial T}{\partial t} = \nabla \cdot (k \nabla T) + Q, \] (2)

where the temperature \(T \) is an unknown function and the mass density \(\rho \), the heat capacity \(c \) and the magnetic fields that transport large amounts of energy. Even small power losses can result in considerable heating up. The skin effect causes most heat generation at material boundaries. Hence the temperature considerably influences the material parameters, e.g. the electric conductivity, and thus the electromagnetic fields. This underlines the need for a mutual coupling of the heat and electromagnetic field models.

A transient simulation of the coupled problem often suffers from relative small time steps due to high frequencies in the electromagnetic part. However, heating up is a comparatively slow effect. Therefore simulations of large time intervals are necessary. The small time steps in combination with long time intervals induce high computational cost or make a simulation even infeasible. It is beneficial to reduce the computational effort for solving the electromagnetic problem. In this paper we discuss an adapted model that allows for a mixed formulation: frequency domain analysis of the EM problem and time domain for the heat problem. This approach is similarly implemented in COMSOL Multiphysics. We focus on numerical analysis in the framework of dynamic iteration.

An model example from industry is used for numeric results. KOSTAL describes with that the power transfer by induction for an inductive charging station. It will be used to charge batteries of electric cars.

2 Modelling

Electromagnetic fields are mathematically described by a system of time-dependent partial differential equations on a domain Ω. It reads in curl-curl formulation:

\[\varepsilon \frac{\partial^2 \mathbf{A}}{\partial t^2} + \sigma(T) \frac{\partial \mathbf{A}}{\partial t} + \nabla \times (\mathbf{v} \nabla \times \mathbf{A}) = \mathbf{J}_e, \] (1)

where the reluctivity \(\varepsilon \) and the permittivity \(\sigma \) depend only on space \(\mathbf{r} \in \Omega \), the electrical conductivity \(\sigma \) also on temperature \(T \), the external current density \(\mathbf{J}_e \) is a given sinusoidal source and the magnetic vector potential \(\mathbf{A}(t) \) is unknown on \(t \in [0,t_e] \). For brevity the space dependency \(\mathbf{r} \) is always neglected. On the other hand we have the heat equation

\[\rho c \frac{\partial T}{\partial t} = \nabla \cdot (k \nabla T) + Q, \] (2)

where the temperature \(T \) is an unknown function and the mass density \(\rho \), the heat capacity \(c \) and the magnetic vector \(\mathbf{A}(t) \) is unknown on \(t \in [0,t_e] \). For brevity the space dependency \(\mathbf{r} \) is always neglected. On the other hand we have the heat equation

\[\rho c \frac{\partial T}{\partial t} = \nabla \cdot (k \nabla T) + Q, \] (2)

where the temperature \(T \) is an unknown function and the mass density \(\rho \), the heat capacity \(c \) and the magnetic vector \(k \) depends on space and temperature. The term \(Q \) is a source term. It is given by the power loss of the electromagnetic field and couples \([1] \) and \([2] \). If we neglect hysteresis losses, \(Q \) is described by

\[Q(A,T) = \sigma(T) \frac{\partial A}{\partial t} \frac{\partial A}{\partial t} \frac{\partial A}{\partial t} J_e. \] (3)

We equip \([1] - [3] \) with boundary and initial conditions at \(t_0 \) and discretise it. However \([1] \) requires very small time steps for the fast varying signal \(J_e \). This problem is addressed in the next section.

3 Averaging Power and Temperature

We split the time interval of interest \([t_0, t_e]\) in time windows \([\tau_i, \tau_{i+1}]\) according to the time scale of the heat transfer, see Fig. [1]. Since heat transfer is a rather slow process, it is sufficient to consider only the averaged power per time window that is generated:

\[\bar{Q}_i = \frac{1}{\tau_{i+1} - \tau_i} \int_{\tau_i}^{\tau_{i+1}} Q(A(t), T(t)) \, dt \] (4)
and similarly the temperature is averaged:
\[\bar{T}_i = \frac{1}{\tau_{i+1} - \tau_i} \int_{\tau_i}^{\tau_{i+1}} T(t) \, dt. \tag{5} \]

It follows for time-harmonic input signals \(\hat{J}_e \)
\[\hat{Q}_i = \sigma(\bar{T}_i) \frac{\omega^2}{2} \|\hat{A}_e\|^2 + \frac{\omega}{2} \text{Im}(\hat{A}_e) \cdot \hat{J}_e. \tag{6} \]
where \(\omega \) is the angular frequency and \(\hat{J}_e \) the amplitude of \(J_e \) and \(\hat{A}_e \) is the complex Fourier coefficient of the solution for \(A = \hat{A}_e e^{i\omega t} \) with \(\hat{J}_e = J_e e^{i\omega t} \).

We derive a simplified system consisting of a (1) in frequency domain and a (2) in time domain:
\[
\begin{align*}
(j \omega \sigma(\bar{T}_i) - \omega^2 \epsilon)\hat{A}_e + \nabla \times (\nabla \times \hat{A}_e) &= \hat{J}_e, \tag{7}

\rho c \frac{\partial T}{\partial t} - \nabla \cdot (k \nabla T) &= \bar{Q}_i, \tag{8}
\end{align*}
\]
where \(\bar{Q}_i \) is defined in (5) and \(\bar{T}_i \) in (5). Equation (7) is equivalent to an average power transfer model of (1). However, in frequency domain only a linear system has to be solved instead of many time steps. This approach exploits efficiently different time scales.

4 Co-simulation

We solve the system (3)–(5) iteratively (1). In the following the subscript index \(i \) belongs to time step \(t_i \) and the superscript index \((l) \) denotes the iteration step \(l \).
\[
\begin{align*}
(j \omega \sigma(\bar{T}_{i+1}^{(l)}) - \omega^2 \epsilon)\hat{A}_{e+1}^{(l+1)} + \nabla \times (\nabla \times \hat{A}_{e+1}^{(l+1)}) &= \hat{J}_e, \\
\hat{Q}_{i+1}^{(l+1)} &= \sigma(\bar{T}_{i+1}^{(l+1)}) \frac{\omega^2}{2} \|\hat{A}_{e+1}^{(l+1)}\|^2 + \frac{\omega}{2} \text{Im}(\hat{A}_{e+1}^{(l+1)}) \cdot \hat{J}_e, \\
\bar{T}_{i+1}^{(l+1)} &= \frac{h_i}{\rho c} \nabla \cdot (k \nabla \hat{P}_{i+1}^{(l+1)}) = \bar{T}_i + \frac{h_i}{\rho c} \hat{Q}_{i+1}^{(l+1)}
\end{align*}
\]

The co-simulation can be organized as shown in Fig. 3 for the special case where time step and time window sizes agree, i.e., \(h_i = \tau_{i+1} - \tau_i \).

In the full paper this algorithm is numerically analysed and convergence of the inner loop is shown. This converges to the average power and temperature model from Sec. 3 in a second step it will be shown, that this model converges to the original model from Sec. 2 when the time steps turn to zero. In addition the computational sequence of the subsystem will be discussed. The results are verified by a 2D model of the industry example, see Fig. 2.

References

The increasing complexity of electronic design needs to be managed with effective optimization algorithms and accurate statistical description of models in order to maximize the performances and the reliability of the electronic systems and minimize the tight time-to-market constraints. New optimization algorithms have to balance accuracy, robustness and computational effort. Typical electronic design problems are computationally hard and require the handling of multiple, conflicting, and non-commensurate objective functions having strong nonlinear interdependence.

In this talk we present a simulation-based multi-scenario and multi-objective optimization algorithm for designing devices, analog mixed-signal circuits, and systems-on-chip. We express the design problems as large-scale constrained multi-objective optimization problems (defined in a mixed integer-discrete-continuous domain) for which a class of efficient algorithms has been designed and implemented. The algorithm scales gracefully with systems size and type; the framework has been tested on several real-world devices, circuits and systems. This framework satisfies the constraints, optimizes the performances while minimizing plastic/silicon area, power consumption, energy and delay maximizing the overall yield. We report on several applications of electronic system design:

1) at the device-level, we tackle the design of MESFETs, MOSFETs and Power MOSFETs;
2) at the circuit-level, we face the design of RF Low Noise Amplifier, Leapfrog Filter, Ultra Wideband Low Noise Amplifier, and Fully Differential Folded-Cascode Op-erational Amplifiers;
3) while at the system-level, we present the results for a pipeline A/D Converter, a Receiver front-ends for UMTS and UWB Communications and a Multi Processor Systems-on-Chip.

The effectiveness and robustness of the proposed approach, as compared with the state-of-art of academic and commercial methods, are demonstrated. The results show a significant improvement in all the tackled electronic design problems.

Acknowledgement. This work is supported by the ERG - Energy for a Green Society (ENIAC-JTI) - WP on Optimal Solar Cell Design, May 2011 - May 2014.

References

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>119</td>
<td>Swarm-based algorithms for the Minimization of the Magnetic Field of Underground Power Cables</td>
<td>D. Altomonte, A. Laudani, G. Pulcini, A. Salvini, F. Riganti Fulginei</td>
</tr>
<tr>
<td>121</td>
<td>Numerical modeling of standard lightning impulse on overhead lines</td>
<td>S. Antonescu, C. Munteanu</td>
</tr>
<tr>
<td>129</td>
<td>Fast Solution of a Magnetostatic Problem with Parallel ILU</td>
<td>M. Bollhoefer, R. Bianchetti, J. Ostrowski, and D. Pusch</td>
</tr>
<tr>
<td>131</td>
<td>Efficient Shooting Method Based on Leading Dynamics Determination by QR Decomposition</td>
<td>Federico Bizzarri, Angelo Brambilla, Giambattista Gruosso, and Giancarlo Storti Gajani</td>
</tr>
<tr>
<td>135</td>
<td>On an integral equation method for the electromagnetic scattering of biperiodic structures</td>
<td>Beatrice Bugert and Gunther Schmidt</td>
</tr>
<tr>
<td>145</td>
<td>Advanced Computer Methods for Grounding Analysis</td>
<td>Ignasi Colominas, Jose Paris, Xesus Nogueira, Fermin Navarrina, and Manuel Casteleiro</td>
</tr>
<tr>
<td>149</td>
<td>Transmission line parameters computed by NURBS-based impedance boundary conditions: the case of different conductivities</td>
<td>Rafael Vazquez, Annalisa Buffa, and Luca Di Rienzo</td>
</tr>
<tr>
<td>153</td>
<td>Time Domain Models for Lossless Multiport Waveguide Structures in Impedance and Admittance Formulation based on Real Eigenmodes</td>
<td>Thomas Flisgen and Ursula van Rienen</td>
</tr>
<tr>
<td>155</td>
<td>Field of values analysis of Laplace preconditioners for the Helmholtz equation</td>
<td>Antti Hannukainen</td>
</tr>
<tr>
<td>159</td>
<td>Validation of the Potential Method; comparing measurements of a dihedral with calculations</td>
<td>Magnus Herbertsson</td>
</tr>
<tr>
<td>169</td>
<td>Efficient solvers for optimal control of eddy current problems with regularized state constraints</td>
<td>Michael Kolmbauer and Ulrich Langer</td>
</tr>
<tr>
<td>173</td>
<td>The (1+1)D Space-Time Discontinuous Galerkin Trefftz Method</td>
<td>Fritz Kretzschmar, Sascha M. Schneppe, Igor Tsukerman, and Thomas Weiland</td>
</tr>
<tr>
<td>181</td>
<td>On the autocorrelation of environment induced noise</td>
<td>B.L. Michielsen</td>
</tr>
<tr>
<td>187</td>
<td>Grating profile optimization for reflection 1st order Littrow mounting</td>
<td>Andrey A. Petukhov, Michael K. Trubetskov, and Alexander N. Bogolyubov</td>
</tr>
<tr>
<td>191</td>
<td>Modeling and Analysis of the Performance Improvement Techniques for EMI Filters</td>
<td>Adina Racasan, Calin Munteanu, Vasile Topa, Dan Micu, Claudia Pacurar, Ema Adam</td>
</tr>
<tr>
<td>195</td>
<td>Coupling of FEM and Fourier-mode expansion for the scattering by perfectly conducting gratings</td>
<td>Guanghui Hu and Andreas</td>
</tr>
<tr>
<td>197</td>
<td>A new indicator to assess the quality of a Pareto approximation set applied to improve the optimization of a magnetic shield</td>
<td>E. Dilettoso, S.A. Rizzo, N. Salerno</td>
</tr>
<tr>
<td>199</td>
<td>Accurate and efficient FEM simulations of circular spiral planar inductors</td>
<td>S.A. Rizzo, N. Salerno and S. Sindoni</td>
</tr>
<tr>
<td>203</td>
<td>An Embarrassingly Parallel Algorithm for Finite Element Formulations</td>
<td>Eike Scholz, Sebastian Schoeps, and Markus Clemens</td>
</tr>
<tr>
<td>205</td>
<td>The Reconstruction of Shape with 3-Step Modeling Strategy</td>
<td>Murat Simsek</td>
</tr>
<tr>
<td>207</td>
<td>A High-Order Discontinuous Galerkin-Approach-Based Particle-In-Cell Method for the Simulation of Large Scale Plasma Devices</td>
<td>A. Stock, J. Neudorfer, M. Pfeiffer, R. Schneider, S. Fasoulas, and C.-D. Munz</td>
</tr>
</tbody>
</table>
Wednesday Regular Poster Session 14:50 - 16:20

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>143</td>
<td>Frequency Parameterized Models for Planar On-Chip Inductors</td>
<td>Gabriela Ciuprina, Daniel Ioan, Cosmin-Bogdan Dita, and Mihai-Iulian Andrei</td>
</tr>
<tr>
<td>151</td>
<td>Dynamical analysis and control of chaos in Vilnius chaotic oscillator circuit</td>
<td>Selcuk Emiroglu, Yilmaz Uyaroglu</td>
</tr>
<tr>
<td>157</td>
<td>Optimization of Planar Structures by Means of Shifted Winding</td>
<td>Claudia Hebedean, Calin Munteanu, Adina Racasan</td>
</tr>
<tr>
<td>165</td>
<td>Eddy current analysis of a PWM controlled induction machine</td>
<td>Hai Van Jorks, Erion Gjonaj, Thomas Weiland</td>
</tr>
<tr>
<td>175</td>
<td>Novel alternate mixed-mode chaotic circuit models for secure communication</td>
<td>Umesh Kumar</td>
</tr>
<tr>
<td>179</td>
<td>Simulation of a double-gate MOSFET by a non parabolic energy-transport subband model based on MEP including surface roughness scattering</td>
<td>V. D. Camiola, G. Mascali, and V. Romano</td>
</tr>
<tr>
<td>183</td>
<td>CIBSOC Program - Spiral Inductor Inductance Calculation and Layout Optimization</td>
<td>Claudia Pacurar, Vasile Topa, Adina Racasan, Calin Munteanu</td>
</tr>
<tr>
<td>185</td>
<td>Circuit Modelling, Simulation and Realization of the new Sundarapandian-Pehlivan Chaotic System</td>
<td>Ihsan Pehlivan, Ismail Koyuncu, Vaidyanathan Sundarapandian, Yilmaz Uyaroglu</td>
</tr>
<tr>
<td>193</td>
<td>Analyzing Distortion Contributions in a Complex Device Model</td>
<td>Timo Rahkonen, Janne P. Aikio</td>
</tr>
<tr>
<td>209</td>
<td>Realization Of Sprott Case C Attractor With CCIIs</td>
<td>Yilmaz Uyaroglu, Ihsan Pehlivan</td>
</tr>
</tbody>
</table>

Thursday Regular Poster Session 12:30 - 13:30

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>Optimization of the efficiency of a photovoltaic cell by means of a genetic algorithm</td>
<td>Giuseppe Ali, Francesco Butera, and Nella Rotundo</td>
</tr>
<tr>
<td>125</td>
<td>Convergence behaviour of coupled pressure and thermal networks</td>
<td>Andreas Blaszczyk, Reto Flückiger, Thomas Müller, Carl-Olof Olsson</td>
</tr>
<tr>
<td>127</td>
<td>Thermal Design of VSD Dry-Type Transformer</td>
<td>Marcos Bockholt, Wolfgang Mönig, Benjamin Weber, Bhavesh Patel, B. Cranganu-Cretu</td>
</tr>
<tr>
<td>141</td>
<td>Streamer Inception and Propagation from Electric Field Simulations</td>
<td>Thomas Christen</td>
</tr>
</tbody>
</table>
Optimization of the efficiency of a photovoltaic cell by means of a genetic algorithm

Giuseppe Ali¹,², Francesco Butera¹, and Nella Rotundo¹

¹ Dipartimento di Matematica, Università della Calabria, Arcavacata di Rende I-87036, Cosenza, Italy
giuseppe.ali@unical.it, francesco.butera@unical.it, nella.rotundo@unical.it
² INFN, Gruppo collegato di Cosenza, Arcavacata di Rende I-87036, Cosenza, Italy

Summary. We consider an optimization problem for a photovoltaic cell, modeled by the drift diffusion equations, modified to include optical effects. In order to optimize the efficiency of the cell, first we determine the most relevant parameters, such as the number of fingers in a channel or the initial concentration. Then we use a genetic algorithm to determine the sets of parameters which optimize the efficiency of the cell.

1 Introduction

The current efficiency of photovoltaic cell panels is around 20% [1]. Higher values of efficiency (around 23%) can be achieved by selecting more expensive types of silicon crystals [2], but their use is limited to those cases in which cost is not an issue.

By contrast, commercial panels often fail to reach even the 20% limit of accuracy, falling closer to a value around 15% [3]. Raising the efficiency of commercial panels to values higher than 20% would be an important goal, both scientifically and technologically. An immediate increase of the efficiency of solar panels is possible by following two distinct paths: selecting materials with higher Energy gaps and increasing the area of the exposed solar cells.

In most commercial solar cells, the soldering contacts and the connections between the wafers that compose the cells themselves are on the same side of the surface which is exposed to the sun. Moving the contacts and the soldering connection on the back of the wafers offers one of the possible ways to increase the surface exposed to the sun. Solar cells constructed using this technique are usually referred to as “Back-contact silicon solar cells” [4].

2 The photovoltaic cell model

We consider a simplified test model of a photovoltaic cell, corresponding to a transversal section of a solar panel. In order to include the effect of the number of fingers in a channel, that is, the distance between two fingers, we consider a block comprising two cells, as in figure.

Fig. 1. Geometry of the test photovoltaic cell

The cell is modeled by the drift-diffusion equations, implemented in the commercial simulator Sentaurus Device. Thus, we neglect all thermal effects, and assume that two carriers are responsible for the diode’s output current, that is, electrons with negative charge \(-q\), and holes with positive charge \(q\). The behavior of the device in the test cell, denoted by \(\Omega\), is described in terms of number densities of electrons and holes, denoted by \(n(x,t)\), \(p(x,t)\), quasi-Fermi potentials for electron and holes, denoted by \(\phi_n(x,t)\), \(\phi_p(x,t)\), current densities for electrons and holes, denoted by \(j_n(x,t)\), \(j_p(x,t)\), and electrostatic potential, denoted by \(\phi(x,t)\). These variables satisfy the following drift-diffusion system [5].

\[-\nabla \cdot \left(\epsilon \nabla \phi \right) = q(N + p - n), \tag{1}\]
\[-q \frac{\partial n}{\partial t} + \nabla \cdot j_n = qR, \quad j_n = -q\mu_n n \nabla \phi_n, \tag{2}\]
\[q \frac{\partial p}{\partial t} + \nabla \cdot j_p = -qR, \quad j_p = -q\mu_p p \nabla \phi_p, \tag{3}\]

where \((x,t) \in \Omega \times [t_0,t_1]\). The densities \(n, p\), are related to the quasi-Fermi potentials by relations derived from the Fermi statistics,

\[n = n_i \gamma_n \exp \left(\frac{\phi - \phi_n}{U_T} \right), \quad p = n_i \gamma_p \exp \left(-\frac{\phi - \phi_p}{U_T} \right),\]

where \(n_i\) is the intrinsic concentration, and \(\gamma_n, \gamma_p\) are complicated functions of the unknowns, which reduce to 1 for Maxwell-Boltzmann statistics. In [2], [3], \(N(x)\) is the doping profile, \(\mu_e, \mu_h\) are the mobilities for electrons and holes, respectively, and \(R\) is the recombination-generation term. For the mobilities we use the PHUMOB model present in Sentaurus. We consider Shockley-Read-Hall and Auger
recombination-generation terms, combined with a radiative model. The system (1)–(3) is supplemented with appropriate boundary conditions.

3 Optimization

Our goal was to maximize the efficiency of Back-contact silicon solar cells. We used an optimization strategy based on a genetic algorithm applied to some physical parameters of the solar cell. In particular we focused on optimizing the doping concentrations of the bulk and of the emitter.

The Sentaurus device simulator was interfaced with a genetic algorithm written in C, via a wrapper capable of restarting Sentaurus with given physical parameters.

![Flow chart simulator device and genetic algorithm](image)

Fig. 2. flow chart simulator device and genetic algorithm

The coupling between Sentaurus and the genetic algorithm was controlled via an euristic algorithm, in which the difference between the computed efficiency in two consecutive steps was used to determine whether the entire optimization process could be stopped.

A wrapper written in C supervises the communication between Sentaurus and the genetic algorithm. The entire process was run under Linux, which provides an ideal platform for these kinds of algorithms.

References

Swarm-based algorithms for the Minimization of the Magnetic Field of Underground Power Cables

D. Altomonte, A. Laudani, G. Pulcini, A. Salvini, F. Riganti Fulginei
DEA, University of RomaTre, Via della Vasca Navale 84, I-00146, Rome, Italy, e-mail: daltomonte@uniroma3.it, alaudani@uniroma3.it, gpulcini@uniroma3.it, asalvini@uniroma3.it, riganti@uniroma3.it

Summary. In this paper a Swarm-Based algorithm approach for detecting an optimal geometrical and electrical connection of underground cables is presented, in order to minimize the magnetic field strength on the ground surface. Since the problem is a Mixed-Integer and Constraint Programming, a Discrete version of Flock-of-Starlings Optimization has been developed. A death penalty method has been used in the optimization process for evaluate the constraints. A comparative analysis is presented for different configurations, with the aim to evaluate the performance.

1 Introduction

In the last years the electric companies has revisited the design method of the underground power cables in order to address the problem of an optimal displacement of them. On the other hand, it is widely acknowledged that the current (50-60 Hz) of transmission and distribution lines, including electrical substations, generates magnetic fields that are the basis of electromagnetic pollution. Indeed the underground power lines were identified as major sources of magnetic fields, since they can produce a significant magnetic field on the ground surface, especially in cases where there are more than four three phase circuits. From an economic point of view, shielding the entire path of a transmission line is impractical. For these reason there needs of optimization techniques at design concerning both the geometrical and circuit assignation of each bundle [1, 2]. From the computational prospective this kind of problems belongs to the Mixed-Integer and Constraint Programming (MICP), in which discrete variables appear. The algorithms usually employed for these problems operate as a string generator, where the string is the individual, which codifies a possible solution. Being the solution a string of numbers the first inconvenient is that some solutions are incompatible with the physical problem. In this paper a new kind of binary algorithm derived from the Flock of Starlings Optimization algorithm is presented and its performance over MICP problems are analyzed. In the work particular attention is given to the optimization of a system of power lines that generates the magnetic field of lower intensity without sacrificing efficacy, stability and availability of power systems.

2 Discrete Flock-of-Starlings Optimization

FSO is a bio-inspired algorithm, swarm-based, which has been employed successfully in several others electromagnetic optimization problems, thanks to its high capability of exploration and to escape from local minima [4]. As FSO can be considered an extension of PSO, so Discrete FSO (DFSO) is an extension of the Discrete Particle Swarm Optimization. In these model the trajectories of particles/birds have a probabilistic mean. In particular the velocity of a single particle must be interpreted as the probability that the current position may change from current state to another. Being the algorithm binary, each coordinate of the position of k-th bird \(x_k(t)\) can be 0 or 1. In addition the various component of the personal best and the global best are integer in \{0,1\}. The velocity of k-th bird \(v_k(t)\) is a probability and it must be constrained. A logistic transformation is introduced by using a sigmoid function in order to do this:

\[
S(v_k) = \left(1 + e^{-v_k}\right)^{-1}
\]

The resulting change in the j-th component of position then is defined by the following rule:

\[
x_j^t(t) = \begin{cases} 1 & \text{if } S(v'_j) > \text{random}(0,1) \\ 0 & \text{otherwise} \end{cases}
\]

Starting from these equations we can obtain the DFSO model. Indeed, in the FSO each individual chooses the direction in accord to the velocity of other members arbitrary chosen in the swarm. But now the velocity is the probability that an individual will change its status. Therefore, the choice of an individual is influenced from the mean probability of changing of the other member followed by it. The updating velocity equation for the DFSO becomes:
\[v_i = M_k \cdot \left[\omega v_i + \lambda (p_{bou} - x_i) + \gamma' (g_{bou} - x_i) \right] \]

where \(M_k \) is the average velocity among controlled birds, expressing the probability of changing a digit from 0 to 1 of the members followed by the generic individuals in the swarm. The value of the \(M_k \) is constrained in \([0.0, 1.0]\), in order to underestimate the influence of other members on the generic individual: this choice is extremely important since linking in a strong way the individuals can produce a stagnation and saturation in 1 or 0 direction. In figure 1 the pseudo code of DFSO is presented.

\begin{verbatim}
Initialization;
Building of the Interconnection Matrix;
For l = 1 : Nstep
 For each bird
 Fitness evaluation;
 Personal and Global best evaluation;
 Mccb computation;
 Update the Velocity;
 Update Position;
 End
End
\end{verbatim}

Fig. 1. Pseudo code of DFSO

3 Codification of the problem and results

The simulation performed in this section takes as reference the analysis done in [1]. In [1] the design of cables displacement in a tunnel is trefoil configuration with the aim to minimize the effects of capacitive and inductive currents and support by racks. In the example hereafter presented, we use a simplified version of the circuit used in [1], by changing the number of circuits employed. The data are reported in Table 1, whereas in the fig. 2 are depicted the displacement of cables in the rack with relative position of the bundles. The combination of the cables are 6 and they can be explicitly expressed, 123;132; 213; 231; 312; 321, for instance if there is a string such as 6345, it means that the first circuit is arranged as 321, second as 213 and etc. Set \(N_C \) as the number of circuit and with \(N_B \) the number of bundles, then any element is codified as an array of 0 and 1 of assigned length.

Table 1. Data of the power circuit employed in the test

<table>
<thead>
<tr>
<th>N.circuit</th>
<th>P(Mw)</th>
<th>Q(MVAR)</th>
<th>Im (A)</th>
<th>(\theta) (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>180</td>
<td>60</td>
<td>680</td>
<td>18</td>
</tr>
<tr>
<td>B</td>
<td>155</td>
<td>43</td>
<td>577</td>
<td>16</td>
</tr>
<tr>
<td>C</td>
<td>-100</td>
<td>-25</td>
<td>370</td>
<td>194</td>
</tr>
<tr>
<td>D</td>
<td>125</td>
<td>-30</td>
<td>461</td>
<td>193</td>
</tr>
</tbody>
</table>

Table 2. Results of BFSO

<table>
<thead>
<tr>
<th>Mean</th>
<th>Variance</th>
<th>Best Configuration</th>
<th>Best Fitness Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4005e-007</td>
<td>3.262e-016</td>
<td>56533124</td>
<td>6.2566e-007</td>
</tr>
</tbody>
</table>

Fig. 2. Displacement of bundles in the underground rack, all values is expressed in meter.

References

Numerical modeling of standard lightning impulse on overhead lines

Phd. Eng. Oana Simona ANTONESCU¹, Prof. Dr. Eng. Calin MUNTEANU²

¹Technical University of Cluj Napoca, oana.antonescu@et.utcluj.ro
²Technical University of Cluj Napoca, calin.munteanu@et.utcluj.ro

Summary: The paper approaches the topic of the numerical modelling of the electromagnetic disturbances that occurs on HV lines. Being broadband signals, an accurate evaluation of the disturbances propagation on HV lines requires that the transmission lines model to be taken into consideration. Therefore, in the first part of the paper the principles of modelling using non-uniform transmission lines are emphasized. Then the per-unit-length parameters computation is detailed, with the terms which take account of the influence of a lossy ground. In the second part of the paper the numerical computation algorithm implemented is presented. In the last part of the paper there are presented several examples using a concrete HV line to which several standard test signals have been applied.

1 Introduction

The principle of modeling the non-uniform transmission lines is based on the idea of dividing the line into multiple pieces of uniform lines with the length very small in comparison with the wavelength.

The numerical modelling of the electromagnetic disturbances propagation on HV lines can be achieved using professional software packages designed for circuits’ numerical analysis. In this paper the PSPICE software that is included in the ORCAD 9.2 package was used. The general flowchart of the numerical algorithm implemented in accordance with the details outlined in the above paragraphs is presented in Fig. 2.

2 The per-unit-length parameter

The HV line per-unit-length parameters are computed according to Carson’s theory and approximations for wave propagation above loss ground.

Self impedance includes three components:

\[Z_{ii} = j\omega L_{li} + Z_c + Z_g \]

The loop inductance is:

\[L_{li} = \frac{\mu_0}{2\pi} \ln \frac{2h_i}{r_i} \]

The internal impedance:

\[Z_c = R_c + jX_c = \frac{\rho \gamma}{2\pi r} \frac{I_0(\gamma r)}{I_1(\gamma r)} \]

in which the material constants \(\mu \) and \(\sigma \) respectively the propagation constant \(\gamma = \sqrt{j\omega\mu(\sigma + j\omega\varepsilon)} \).

The mutual impedance \(Z_{ij} \) of two conductors \(i \) and \(j \), both parallel to the ground, with their respective heights above the ground being \(h_i \) and \(h_j \) have two components:

\[Z_{ij} = j\omega L_{ij} + Z_{gm} \]

The mutual inductance \(L_{ij} \) is:

\[L_{ij} = \frac{\mu_0}{2\pi} \ln \left(\frac{D_i'}{D_j} \right) \]

The impedance of the ground return path \(Z_{gm} \) is:

\[Z_{gm} = R_{gm} + jX_{gm} \]
In the computation of the capacitance of transmission line accepts two factors: the length is larger then the dimensions of the circuits, the environment is uniform (air), the conductors have a cylindrical configuration.

The impedance of the earth return path is represented by Carson’s correction terms for the self and mutual impedances.

3 Numeric simulation results

This paper presents several numerical applications of the developed algorithm. The examples focus on a 110 kV LEA. For the LEA parameters modeling, existing towers in the National Energetic System are used. Consider the case of an overhead power transmission line, at the left end one apply the lightning pulse voltage 1.2/50 µs. The line parameters are computed at frequency 50Hz and the ground is characterized by $\rho=100 \ \Omega \text{m}$. The response wave presented in Fig. 3 is the signal at the open load end of the high voltage line obtained with the proposed software module.

To validate the results obtained with the module software proposed, in Fig. 4 is presented the result obtained with ATP.

In case when the parameters are evaluation at 500 KHz frequency, we can see the wave shape of signal in Fig.5 and when the ground is characterized by $\rho=1000 \ \Omega \text{m}$ the result is in Fig.6.

The conclusion of analyses performed is that the appearance of a lightning pulse on one phase of the HV line conductors generates significant over-voltages and over-currents, while the waves shape is essentially influenced by the geometrical properties of the line.

References

Index-aware model Order Reduction: LTI DAEs in electric networks

Nicodemus Banagaaya1 and Wil Schilders1
Dept. of Mathematics and Computer Science, Technische Universiteit Eindhoven, The Netherlands
n.banagaaya@tue.nl, w.h.a.schilders@tue.nl

Summary. Model order reduction (MOR) has been widely used in the electric networks but little has been done to reduce higher index differential algebraic equations (DAEs). Most methods first do an index reduction before reducing a higher DAEs but this can lead to loss of system physical properties. In this paper we present a new MOR method for DAEs called the index-aware MOR (IMOR) which can reduce higher index-2 system while preserving the index of the system.

1 Introduction

Consider a linear time invariant (LTI) DAE system:

\[Ex'(t) = Ax(t) + Bu, \quad x(0) = x_0, \] (1a)
\[y(t) = C^T x(t), \] (1b)

where \(E \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{m \times n}, x(t) \in \mathbb{R}^n \) is the state vector, \(u(t) \in \mathbb{R}^m \) is the input vector, \(y(t) \in \mathbb{R}^r \) is the output vector and \(x_0 \in \mathbb{R}^n \) must be a consistent initial value since \(E \) is singular. In many MOR methods they always assume that \(x_0 = 0 \) which lead to a transfer function \(H(s) = C^T (sE - A)^{-1}B \) if and only if matrix pencil \(sE - A \) is regular. Unfortunately for the case of DAEs we cannot always have this freedom of choosing an arbitrary initial condition \(x_0 \), in fact we cannot always obtain a transfer function especially for index greater than 1 as discussed in Sect. 2. This motivated us to propose a new MOR technique for DAEs called the IMOR method which takes care of this limitation. In this technique before we apply MOR we first decompose the DAE system into differential and algebraic parts using matrix and projector chains introduced by Márz in 1996. We then use the existing MOR techniques such as the Krylov based methods on the differential part and construct subspaces to reduce the algebraic parts. In Sect. 2, we briefly discuss the IMOR method for index-2 systems (IMOR-2) more details can be found in [2].

2 Index-aware MOR for index-2 systems

In order to decompose higher index systems (\(\mu > 1 \)), Márz suggested an additional constraint \(Q_j Q_i = 0 \), \(j > i \) on the projector construction. If this constraint holds then Equation (2) can be decomposed into differential and algebraic parts. However, the Márz decomposition leads to a decoupled system of dimension \((\mu + 1)n \). It does not even preserve the stability of the DAE system. This motivated us to modify the Márz decomposition using special basis vectors as presented in papers [3] and [2] for the case of index-1 and index-2 respectively. Our decomposition leads to a decoupled system of the same dimension as that of the DAE system. Then we apply Krylov methods on the differential part and constructed subspaces to reduce the algebraic parts. In Sect. 2, we briefly discuss the IMOR method for index-2 systems (IMOR-2) more details can be found in [2].

Assume Equation (1a) is an index-2 system this implies \(\mu = 2 \). We observed that for higher index DAEs there is a possibility of obtaining a purely algebraic decoupled system depending on the nature of spectrum of the matrix pencil \(\sigma(E, A) = \sigma_f(E, A) \cup \sigma_a(E, A) \), where \(\sigma_f(E, A) \) and \(\sigma_a(E, A) \) is the set of the finite and infinite eigenvalues respectively. This happens when matrix spectrum has only infinite eigenvalues, i.e. \(\sigma_f(E, A) = \emptyset \). Thus higher index DAEs can be decomposed into two ways. Due to space we are going to only discuss the case when \(\sigma_f(E, A) \neq \emptyset \) the other case can be found in our paper [2]. We now assume matrix pencil of Equation (1a) has atleast one finite eigenvalue. We then construct basis vectors \((p, q)\) in \(\mathbb{R}^n \) with their inversion \((p^*, q^*)^T \) for the projectors \(P_0 \) and \(Q_0 \) respectively where \(p \in \mathbb{R}^{n \times m}, q \in \mathbb{R}^{n \times k_0}. \) This leads to a theorem below.

Theorem 1. Let \(P_{01} = p^T P_1 p \), \(Q_{01} = p^T Q_1 p \), then \(P_{01}, Q_{01} \in \mathbb{R}^{n_0 \times n_0} \) are projectors in \(\mathbb{R}^{n_0} \) provided the constraint condition \(Q_0 Q_0^T = 0 \) holds.

Next, we construct another basis matrix \((p_{01}, q_{01})\) in \(\mathbb{R}^{n_0} \) made of \(n_0 \) independent columns of projector \(P_{01} \) and \(k_1 \) independent columns of its complementary projector \(Q_{01} \) such that \(n_0 = n_{01} + k_1 \) and it’s inverse can be denoted by \((p_{01}^T, q_{01}^T)^T \). Then Equation (1a) can be decomposed as:...
\[\xi_p' = A_p \xi_p + B_p u, \]
\[\xi_{q,1}' = A_{q,1} \xi_q + B_{q,1} u, \]
\[\xi_{q,0}' = A_{q,0} \xi_p + B_{q,0} u + A_{q,01} \xi_{q,1}, \]
\[y = C_p \xi_p + C_{q,1} \xi_{q,1} + C_{q,0} \xi_{q,0}, \]
\[\text{where} \]
\[A_p := p_0^T p_0^{-1} E_2^{-1} A_{2p0p01}, \quad B_p := p_0^T p_0^{-1} E_2^{-1} B, \]
\[A_{q,1} := q_0^T p_0^{-1} E_2^{-1} A_{2p0p01}, \quad B_{q,1} := q_0^T p_0^{-1} E_2^{-1} B, \]
\[A_{q,0} := q_0^T Q_1 p_0 E_2^{-1} B, \quad B_{q,0} := q_0^T E_2^{-1} B, \]
\[A_{q,01} := q_0^T Q_1 p_0 E_2^{-1} B, \quad C_p = p_0^T p_0 C \in \mathbb{R}^{n_01, \ell}, \]
\[C_{q,1} = T q_0^T p_0 C \in \mathbb{R}^{k_1 \ell}, \quad C_{q,0} = q_0^T C \in \mathbb{R}^{k_0 \ell}. \]

Equations (3a), (3b) and (3c) are of dimension \(n_01, k_1 \) and \(k_0 \) respectively, where \(n = n_0 + k_1 + k_0 \). System (3) preserves stability of the DAE system (1) since it can be proved that \(\sigma(A_p) = \sigma_f(E, A) \). If we take the Laplace transform of (3) and set \(\xi_p'(0) = 0 \) then we obtain

\[Y(s) = [H_p(s) + H_{q,1}(s) + H_{q,0}(s)] U(s) + H_{q,0}(0), \]

where
\[H_p(s) = C_p^T (sl_m - A_p)^{-1} B_p, \]
\[H_{q,1}(s) = C_{q,1}^T (sl_m - A_p)^{-1} B_p + B_{q,1}, \]
\[H_{q,0}(s) = C_{q,0}^T (sl_m - A_p)^{-1} B_p + A_{q,01} B_{q,1}, \]
\[H_{q,0}(0) = -C_{q,0}^T A_{q,01} B_{q,1} u(0). \]

Not always we can obtain the transfer function of index 2 systems for arbitrary input vector \(u \) unless \(H_{q,0}(0) = 0 \) or \(Y(s) = H(s) U(s) \). We can now apply IMOR-2 method as follows: If we choose the expansion point \(s_0 \in \mathbb{C} \setminus \sigma(A_p) \), we construct a Krylov-subspace generated by \(M_p := -(s_0 I_m - A_p)^{-1} \) and \(R_p := -(s_0 I_m - A_p)^{-1} B_p \). Then, \(V_{p_0} := \text{orth}(\mathcal{K}(M_p, R_p)), r \leq n_01 \). We then use \(V_{p_0} \) to construct the subspace \(\mathcal{Y}_{q,0} := \text{span}(B_{q,1}, A_{q,1} V_{p_0}) \) and its orthonormal matrix is denoted by \(V_{q,01} = \text{orth}(\mathcal{Y}_{q,1}), r_1 \leq \min(r + 1, m, \dim(\mathcal{Y}_{q,0})). \) We finally construct subspace \(\mathcal{Y}_{q,0} = \text{Span}\{\mathcal{Y}_{q,1}, \mathcal{Y}_{q,01}\} \), where
\[\mathcal{Y}_{q,1} = A_{q,0} B_{p_0} + B_{q,0} + A_{q,01} B_{q,1}, \]
\[\mathcal{Y}_{q,01} = A_{q,01} B_{q,1}, \]
\[\mathcal{Y}_{q,0} = [A_{q,0} + s_0 A_{q,01} A_{q,1}] M_p + A_{q,01} A_{q,1} V_{p_0} \] and it’s orthonormal matrix is denoted by \(V_{q,0} = \text{orth}(\mathcal{Y}_{q,0}), \) where \(r_0 \leq \min(r + 2, m, \dim(\mathcal{Y}_{q,0})). \) We can now use the orthonormal matrices \(V_{p_0}, V_{q,1,1} \) and \(V_{q,0} \) to reduce the dimension of the subsystems (3a), (3b) and (3c) respectively as consequence the dimension of the decoupled system (3) is also reduced. Hence, if we substitute \(\xi_p = V_{p_0} \xi_p', \xi_q = V_{q,0} \xi_q', \xi_{q,1} = V_{q,1,1} \xi_{q,1}, \)
\[\xi_{q,0} = V_{q,0} \xi_{q,0}, \text{ into system (3) and simplifying we can obtain a reduced model of DAE system (1) which will call the IMOR-2 model.} \]

3 Numerical results

We used an index -2 test system called S80P1 in [5] which is a large power system RLC model. It’s a single-input single-output (SISO) system of dimension 4182. We applied the IMOR-2 method using \(s_0 = j10^3 \). We obtained a reduced model of total dimension 219 as shown in Table [1]. We observed that the magnitude of the transfer reduced model coincides with that of the original model at low frequencies with very small error as shown in Fig. [1]. We have seen that the IMOR-2 method leads to good reduced model and can be used on any index-2 system.

Table 1. Dimension of the Original and Reduced model

<table>
<thead>
<tr>
<th>Models</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Model</td>
<td>4028 35 119</td>
</tr>
<tr>
<td>Reduced Model</td>
<td>170 1 48</td>
</tr>
</tbody>
</table>

![Fig. 1. Magnitude of the transfer functions](image)

Acknowledgement. This work is funded by NWO.

References

Convergence behaviour of coupled pressure and thermal networks

Andreas Blaszczyk¹, Reto Flückiger¹, Thomas Müller², Carl-Olof Olsson³

¹ABB Corporate Research Switzerland, Andreas.Blaszczyk@ch.abb.com, Reto.Flueckiger@ch.abb.com
²LRR Institute for Computer Science, Technical University Munich, Germany, Thomas.Mueller@in.tum.de
³ABB Corporate Research Sweden, Carl-Olof.Olsson@se.abb.com

Summary: A new concept of the coupling between pressure and thermal networks for thermal simulations of power devices is presented. The solution method and the convergence behaviour are discussed.

1 Introduction

The network approach is traditionally used for thermal simulations of electric power devices. In particular the coupling between thermal and pressure network seems to offer a good alternative to the mesh based methods like CFD thanks to an acceptable accuracy and a moderate computational effort. However, the first attempts to couple both network types have shown that the convergence behaviour is a limiting factor [1]. In this paper we present a new concept of the coupling between thermal and pressure networks as well as results of our investigations to mitigate the convergence problems.

2 Network concept

Let us consider a power transformer represented as a simple thermal model, Fig 1a. It consists of a coil submerged in a fluid as a heating device and a radiator as a cooling device dissipating heat to the ambient air. The circulation of the fluid through the coil and the radiator keeps the temperature of the coil within the required limit. The flow of the fluid determines the topology of the extended pressure network shown in Fig. 1b. Each “fluid flow” branch (red, thick line in the middle) is assisted by two “temperature” branches (thin, green lines) that enable propagation of the fluid temperature along the network according to the computed direction of the flow. The mixing of the fluid at different temperatures is performed by the “mixing nodes”. The coupling to the thermal network is realized by the “thermal junction” element. This element creates a temperature jump $\Delta \theta$ in the corresponding temperature branch, which is determined by the mass flow rate \dot{m} in this branch and the power P flowing from/to the thermal network via the “fluid node”:

$$ P = mc_p \Delta \theta $$ (1)

where c_p is the specific heat of the fluid. The formula (1) is also used as a basic equation in implementation of the “mixing nodes”.

The “fluid nodes” provide a galvanic connection to the thermal network, which is partially shown in Fig. 1c. The resistors used in the network schemes (Fig. 1bc) are formulated according to thermodynamic similarity theory [2] and will be explained in the extended version of this paper.
Table 1 Analogy between quantities and units of electric, thermal and pressure networks.

<table>
<thead>
<tr>
<th>Electric network</th>
<th>Thermal network</th>
<th>Extended pressure network</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage U [V]</td>
<td>Temperature [°C]</td>
<td>Pressure [Pa]</td>
</tr>
</tbody>
</table>

*) There is no “current” in the temperature branches of the pressure network. These branches transfer the “temperature signal” only. The direction of this transfer is the same as the direction of the fluid flow.

3 Solution method

In order to obtain a stable solution of the coupled networks we applied 3 following techniques:

a) Separation of fluid flow branches from thermal/temperature branches
b) Adaptive relaxation
c) Control of the flow direction change

Ad a): The coupled network problems are difficult to solve using the Newton-Raphson method implemented by Spice. Therefore, we have split the coupled network into 2 separate networks and solve them iteratively. The first network, pure pressure one, consists of the fluid flow branches including all flow resistances, buoyancy heads and pumps. The second one consists of the whole thermal network and the temperature branches of the extended pressure network. The “thermal junction” and the “mixing node” elements are the only network components that have a separate representation dedicated for each of the both networks. The separated networks can be solved using Spice by assuming boundary conditions in form of interface variables that are iteratively delivered by the solution of the other network. These interface variables include mass flow rates and velocities as a solution of the pure pressure network as well as temperatures as a solution of the thermal/temperature network.

Ad b): A relaxation technique is needed to ensure the convergence. The actual values of the interface variables are modified in such a way that the difference between subsequent iterations is adaptively reduced from 80 % (for the first iteration) up to 1 % (for higher iteration counts).

Ad c): The network branches with a small mass flow rate show a tendency to change the flow direction during the iterative solution. Due to the significant temperature difference between the top and bottom fluid the direction changes may lead to non-convergence. For the vertical coil ducts this problem can be mitigated by disabling the flow from the top to the bottom by means of “blocking” resistors. In case of branches for which the flow can be bidirectional an enhanced relaxation technique has to be applied.

4 Result

An example of the convergence behaviour has been presented in Fig. 2. It shows the mass flow rate within a coil duct of a liquid type power transformer. We selected a duct transporting a relatively small fraction of the total heat power (<0.5 %). Consequently we need 49 iterations to achieve the convergence criterion (< 0.001 relative change). Other load cases of the same transformer with larger or zero heat power transported through the same duct converge within 10-20 iterations. The typical solution time on a standard computer is in the range of 0.5 s.

![Fig. 2 Example of a convergence curve for mass flow rate in a transformer coil duct](image)

References

Summary

Design of variable speed drive (VSD) dry-type transformers requires accurate electromagnetic and thermal modelling of the transformer. The models should be able to explain the behaviour of the transformer under normal and short circuit conditions. If not appropriately taken into consideration, load losses can generate local overheating in the transformer and hence cause the transformer failure due to increased winding temperature. A thermal network model to be used with a finite element model of the unit is described. This method is shown to deliver a good compromise between time-consuming simulations and a semi-empirical thermal model for reliable designs of complex dry-type VSD transformers.

1 Introduction

Variable speed drives are used to control the speed of rotation of electronic motors in many industrial applications. These are pumps, ventilators, compressors, belt conveyors, rolling mills, paper machines and an innumerable amount of different machines used in manufacturing and other industries. ABB Dry Type Converter Transformers have an extensive experience with VSD transformers since more than 20 years. Especially the harmonic frequencies content in the transformer current increases the mechanical, dielectrical and thermal stresses. Therefore the transformers must be specially designed for this duty, fulfilling the IEC [3] requirements and beyond.

2 Electromagnetic Simulation of VSD-Transformers

Analytic formulations for the losses in the windings which are governed by skin and proximity effects are limited because of the complex arrangement of the windings in typical VSD transformers. As a result, the use of computational electromagnetic is vital in order to predict these losses at the normal operating conditions. In this paper, we consider the case of a 12-pulse transformer consisting of the two secondary low voltage (LV) windings.

3 Thermal Network Model

The main focus of this work relies on the thermal model to be used with the losses computed by the electromagnetic simulations [4] and predict local overheating of the windings. The model proposed uses physics-based formulation of mass, energy and momentum balance equations which enables a large validity range of the method in opposite to purely empirical models.

3.1 Physics-based Thermal Model

The physics of the thermal model is described in three basic structures. The simplified generic structures show to be very efficient for modelling and simulating advanced thermal systems [1,2,5].

3.1.1. Solid Structure

The winding losses from the electromagnetic simulation (ohmic and eddy-current) are applied in the solid structure. In this structure, the conductors and insulation material are described. The energy balance is stated as follows

$$0 = P_k - \dot{Q}_{\text{cond}}$$

where P_k are the transformer losses and \dot{Q}_{cond} is the (axial and radial) heat diffusion inside the windings.

3.1.2. Surface Structure

The surface structure is used to map the interface between a solid potential and a fluid potential. The energy balance equation is stated as follows:

$$0 = \dot{Q}_{\text{cond}} - \dot{Q}_{\text{conv}} - \dot{Q}_{\text{rad}}$$

where \dot{Q}_{conv} and \dot{Q}_{rad} are convective and radiation heat transfer, respectively.

3.1.3. Fluid Structure

The fluid structure is used to map the cooling duct between winding blocks.

$$0 = \dot{Q}_{\text{conv}} + \dot{m}_m \left[h \alpha_c + \frac{v_m^2}{2} + g \zeta_m \right]$$

where h, α_c, v_m, and ζ_m are the convective heat transfer coefficient, the loss factor, the velocity of the medium, and the friction factor, respectively.
\[\cdots \dot{m}_{\text{out}} \left(h_{\text{out}} + \frac{v_{\text{out}}^2}{2} + g_{\text{out}} \right) \]

where \(\dot{m}_{\text{in}}, \dot{m}_{\text{out}} \) are the inlet and mass flow rate of the cooling medium inside the transformer cooling duct, respectively. \(h_{\text{in}}, h_{\text{out}} \) are the inlet and outlet enthalpy of the cooling medium, respectively. \(v_{\text{in}} \) and \(v_{\text{out}} \) are the inlet and outlet velocity of the cooling medium, respectively.

The non-linear algebraic system of equations described in the structures is represented in Eq. 4 and is solved by a standard algebraic equations solver.

\[
F(x) = 0,
\]

where \(x \) is the vector of temperatures of all structures of the transformer model.

Figure 1 shows an overview of the thermal model. The solid structures are connected with each other via heat conduction axially. The solid and surface structures are connected radially via conduction. The surface structures are connected to each other via radiation resistance. The connection between a surface and a fluid is done by convective resistance. Both the convective and the radiation resistance are non-linear, temperature dependent resistances.

Fig. 1: Network representation of the thermal model with a vertical discretization of 3 structures (In this example: 1 low voltage and 1 high voltage winding package)

3.2 Object-Oriented Structure

Figure 2 shows the object oriented structure of the transformer. The structure of the model is fixed, i.e. one coil, one core and an open number of low voltage (NLV) and high voltage (NHV) winding packages. The geometry is fully parametrized which allows high freedom during design process.

Fig. 2: Object-oriented structure of the submodels of the transformer thermal model

3.3. Thermal Management of Windings

As part of the design optimization, it is possible to visualize the thermal management of each winding block. The thermal management gives information about the heat transfer by convection at the winding surroundings. The designers are able to choose more effective cooling ducts by comparing thermal characteristic number as the Rayleigh number.

4 Weak Coupling of Electromagnetic Simulation with Thermal Network Model

A weak coupling of the thermal network model is conducted by using the same axial discretization (number of structures in axial direction) of the thermal model and the post-processed losses of the electromagnetic simulation [4]. The losses computed during the electromagnetic simulations are used as input for the thermal model.

5 Conclusion

The method shown in the present work speeds up the design process of complex VSD-transformers. Overheated areas are localized before production of the unit. This method has been proven to be a good compromise between time-consuming simulation and a semi-empirical thermal model for production of complex dry-type transformer designs.

References

Fast Solution of a Magnetostatic Problem with Parallel ILU

M. Bollhoefer1, R. Bianchetti2, J. Ostrowski2, and D. Pusch2

1 Institute of Computational Mathematics, TU Braunschweig, D-38106 Braunschweig, Germany
m.bollhoefer@tu-bs.de
2 ABB Switzerland, Corporate Research, 5405 Baden-Dättwil, Segelhofstrasse, Switzerland
Romeo.Bianchetti@ch.abb.com, Joerg.Ostrowski@ch.abb.com, David.Pusch@ch.abb.com

Summary. In this contribution we investigate the performance of a parallel ILU preconditioner for the iterative solution of a magnetostatic model problem. Using the magnetic vector potential A and conformal FEM-discretization results in a singular system matrix. We construct the preconditioner for the CG-solver by applying a shift for regularization, see [2, 3, 6]. The resulting regular matrix is then decomposed by the ILUPACK library and is used for preconditioning. ILUPACK is a MPI-parallelized implementation of the inverse-based multilevel block ILU, see [4].

1 Introduction

The magnetostatic problem under consideration writes

$$\nabla \times \frac{1}{\mu} \nabla \times A = j.$$ \hfill (1)

Herein A is the magnetic vector potential, j is a prescribed divergence free current density, and μ is the possibly nonlinear magnetic permeability. Using conformal finite elements for the discretization leads to the following problem that is to be solved in weak formulation

$$\left(\frac{1}{\mu} \nabla \times A, \nabla \times A' \right) = (j, A').$$ \hfill (2)

The solution of magnetostatic problems in presence of nonlinear magnetic material can be time consuming. The change in the material parameters during the nonlinear iteration results in a change in the system matrix $M := \left(\frac{1}{\mu} \nabla \times A, \nabla \times A' \right)$. Magnetostatic problems are typically solved by preconditioned iterative solvers [2,5,7]. Jumps in the magnetic permeability deteriorate the condition of the problem, and preconditioning is mandatory. The preconditioner P^{-1} has to be updated many times if M changes too much during the outer nonlinear iteration, see Fig. 1. Therefore it is essential to provide a fast way of updating the preconditioner.

The system matrix M is singular. In this paper we regularize M by using a small shift $\beta \in \mathbb{R}$. This yields the preconditioner

$$P := \left(\frac{1}{\mu} \nabla \times A, \nabla \times A' \right) + \left(\frac{\beta}{\mu} A, A' \right).$$ \hfill (3)

1 Introduction

The magnetostatic problem under consideration writes

$$\nabla \times \frac{1}{\mu} \nabla \times A = j.$$ \hfill (1)

Herein A is the magnetic vector potential, j is a prescribed divergence free current density, and μ is the possibly nonlinear magnetic permeability. Using conformal finite elements for the discretization leads to the following problem that is to be solved in weak formulation

$$\left(\frac{1}{\mu} \nabla \times A, \nabla \times A' \right) = (j, A').$$ \hfill (2)

The solution of magnetostatic problems in presence of nonlinear magnetic material can be time consuming. The change in the material parameters during the nonlinear iteration results in a change in the system matrix $M := \left(\frac{1}{\mu} \nabla \times A, \nabla \times A' \right)$. Magnetostatic problems are typically solved by preconditioned iterative solvers [2,5,7]. Jumps in the magnetic permeability deteriorate the condition of the problem, and preconditioning is mandatory. The preconditioner P^{-1} has to be updated many times if M changes too much during the outer nonlinear iteration, see Fig. 1. Therefore it is essential to provide a fast way of updating the preconditioner.

The system matrix M is singular. In this paper we regularize M by using a small shift $\beta \in \mathbb{R}$. This yields the preconditioner

$$P := \left(\frac{1}{\mu} \nabla \times A, \nabla \times A' \right) + \left(\frac{\beta}{\mu} A, A' \right).$$ \hfill (3)

The solution of magnetostatic problems in presence of nonlinear magnetic material can be time consuming. The change in the material parameters during the nonlinear iteration results in a change in the system matrix $M := \left(\frac{1}{\mu} \nabla \times A, \nabla \times A' \right)$. Magnetostatic problems are typically solved by preconditioned iterative solvers [2,5,7]. Jumps in the magnetic permeability deteriorate the condition of the problem, and preconditioning is mandatory. The preconditioner P^{-1} has to be updated many times if M changes too much during the outer nonlinear iteration, see Fig. 1. Therefore it is essential to provide a fast way of updating the preconditioner.

The system matrix M is singular. In this paper we regularize M by using a small shift $\beta \in \mathbb{R}$. This yields the preconditioner

$$P := \left(\frac{1}{\mu} \nabla \times A, \nabla \times A' \right) + \left(\frac{\beta}{\mu} A, A' \right).$$ \hfill (3)

1 Introduction

The magnetostatic problem under consideration writes

$$\nabla \times \frac{1}{\mu} \nabla \times A = j.$$ \hfill (1)

Herein A is the magnetic vector potential, j is a prescribed divergence free current density, and μ is the possibly nonlinear magnetic permeability. Using conformal finite elements for the discretization leads to the following problem that is to be solved in weak formulation

$$\left(\frac{1}{\mu} \nabla \times A, \nabla \times A' \right) = (j, A').$$ \hfill (2)

The solution of magnetostatic problems in presence of nonlinear magnetic material can be time consuming. The change in the material parameters during the nonlinear iteration results in a change in the system matrix $M := \left(\frac{1}{\mu} \nabla \times A, \nabla \times A' \right)$. Magnetostatic problems are typically solved by preconditioned iterative solvers [2,5,7]. Jumps in the magnetic permeability deteriorate the condition of the problem, and preconditioning is mandatory. The preconditioner P^{-1} has to be updated many times if M changes too much during the outer nonlinear iteration, see Fig. 1. Therefore it is essential to provide a fast way of updating the preconditioner.

The system matrix M is singular. In this paper we regularize M by using a small shift $\beta \in \mathbb{R}$. This yields the preconditioner

$$P := \left(\frac{1}{\mu} \nabla \times A, \nabla \times A' \right) + \left(\frac{\beta}{\mu} A, A' \right).$$ \hfill (3)
3 Numerical Experiments

Numerical experiments were made on the model problem of Fig. 3. It consists of a copper coil, and a non-conductive high permeable core. The tests were carried out on a 12-core INTEL-Westmere workstation with 3.06GHz and activated hyper-threading. We chose $\beta = 0.01$ for the regularization parameter in (3).

In our experiments we are testing the parallel performance up to 8 cores. The results of the CPU times of the solver are shown in Fig. 4. Therein, the key values of two different meshes for 1.2×10^6 unknowns and for 1.02×10^7 unknowns are drawn. One can observe a perfectly parallel scaling for the pure ILU factorization part. A slightly worse behavior can be seen for the preconditioned conjugate gradient (PCG) solver. Moreover, the PCG needs more time than the factorization for greater problem dimensions. This is due to the fact, that the number of iterations is also increasing with the number of unknowns, see Fig. 5.

Finally, it can be concluded that ILUPACK seems to be a very promising library for the fast parallel solution of magnetostatic problems. This needs to be confirmed for more complex geometries.

References

Efficient Shooting Method Based on Leading Dynamics Determination by QR Decomposition

Federico Bizzarri¹, Angelo Brambilla¹, Giambattista Gruosso¹, and Giancarlo Storti Gajani¹

Politecnico di Milano, DEI, p.za Leonardo da Vinci, 32, 26013 Milano, Italy
bizzarri,brambilla,gruosso,storiti@elet.polimi.it

Abstract In this paper an improved version of the conventional shooting method based on the Newton iterative algorithm is presented. One of the main drawbacks of the shooting method is due to the determination of the fundamental matrix by means of a product of partial matrices that limits its application to medium size circuits. Fundamental matrix free approaches have been presented in literature, they are based on the use of the GMRES method that lowers the computational effort from that of matrix by matrix product to that of matrix by vector product. In this paper a different approach is presented that exploits the properties of the GMRES method based on the Newton iterative algorithm builds the Krylov base \(B = [M_p M^p \ldots M^n p] \) where \(M \in \mathbb{R}^{N \times N} \) and \(p \in \mathbb{R}^N \) is a “tentative” vector. If \(B \) spans the solution of the steady state problem with respect to a given error threshold, the solution is found in \(n \) matrix by vector products with a total cost \(S \times n \times N^2 \). The gain is thus proportional to a factor \((N-n) \). Consider now

\[
\begin{align*}
\frac{dx}{dt} + G(x,t) &= 0 \\
x(t+T) - x(t) &= 0
\end{align*}
\]

where \(G(x,t) : \mathbb{R}^{N+1} \rightarrow \mathbb{R}^N \), models the vector field, \(x \in \mathbb{R}^N \) is the solution, \(t \in \mathbb{R}^+ \) represents time and \(T \in \mathbb{R}^+ \) is the working period. Assume to solve Eq. (1) in the time domain with the simple Implicit Euler integration method and consider one integration time step of length \(h \in \mathbb{R}^+ \), from \(t_n \) to \(t_{n+1} = t_n + h \), we have

\[
x(t_{n+1}) - x(t_n) + hG(x(t_{n+1}),t_{n+1}) = 0.
\]

By deriving this equation with respect to the \(x(t_0) \) initial condition we obtain

\[
\frac{d x(t_{n+1})}{d x(t_n)} + \frac{d x(t_n)}{d x(t_0)} + h \frac{d G(x(t_{n+1}),t_{n+1})}{d x(t_{n+1})} \frac{d x(t_{n+1})}{d x(t_0)} = 0
\]

from which the sensitivity of \(x(t_{n+1}) \) with respect to \(x(t_0) \) can be immediately computed as

\[
\frac{d x_{n+1}}{d x_0} = \left(\mathbb{I} + h \frac{d G(x_{n+1},t_{n+1})}{d x_{n+1}} \right)^{-1} \frac{d x_n}{d x_0}
\]

where \(\mathbb{I} \) is the order \(N \) identity matrix and subscript \(n \) refers to time instant \(t_n \). To compute product \(M_p \), either the \(M_n \) matrices with \(n = \ldots, S \) in Eq. (2) or the \(s_n \) solution vectors must be stored and this can be problematic when dealing with large circuits. The implementation chosen in our simulator PAN follows the second solution to minimise memory usage. Therefore, to compute \(M_p \left. G(x_{n+1},t_{n+1}) \right\} \) is reevaluated at each time point, the \(M_{n+1} \) matrix is recomputed (at the cost of one LU factorisation) and the

² Our simulator PAN is available at the URL: http://brambilla.ws.dei.polimi.it.

1 Introduction

The shooting method, in contrast to harmonic balance, is well suited to compute the steady state behaviour of strong non-linear circuits and its importance has been recently strengthened to the reliable extension of this approach to mixed-signal problems [2]. Its “engine” is based on a time domain analysis that solves the DAE modeling the circuit with a variable time step integration method [1,5]. Time domain analyses computes the residue, i.e. the difference among state variable values at the beginning and at the end of the integration time interval, and the sensitivity matrix, also known as the fundamental matrix \(M \), that relates variations of state variables at the end of the integration period to those at the beginning. One of the main drawbacks of the shooting method is that its application is limited to medium size circuits. This is due to the fact that \(M \) is derived as a product of partial matrices each computed at each integration time step of the time domain analysis. If we assume that the circuit is characterised by \(N \) state variables and that the integration is performed on \(S \) time points, the effort to compute \(M \), which in general is full, is proportional to \(S \times N^3 \) [7]. The introduction of the “matrix free” shooting methods based on GMRES sensibly reduces the computational effort [6].
left matrix by vector product is performed.

2 The proposed approach

According to Floquet theory, matrix M can be decomposed as

$$M = \sum_{k=1}^{N} e^{\lambda_k T} v_k u_k^T$$

(4)

where λ_k are the Floquet exponents of M and u_k, v_k are the corresponding right and left eigenvectors [3]. The boundary value problem defined in Eq. (1) can be solved with the Newton iterative method

$$x_0^{p+1} = x_0^p - \left(\sum_{k=1}^{N} e^{\lambda_k T} v_k u_k^T \mathbb{I} - \mathbb{I} \right)^{-1} (x_S^p - x_0^p)$$

where p is the iteration index and x_0^p is an approximation of the initial condition. If we sort in decreasing order the Floquet exponents and set to 0 those having a real part considerably less than order the Floquet exponents and set to 0 those having a real part considerably less than

$$\Re(\lambda_1)$$

we have

$$\tilde{x}_0^{p+1} = x_0^p - \left(\tilde{M} - \mathbb{I} \right)^{-1} (x_S^p - \tilde{x}_0^p)$$

where $\tilde{M} = \sum_{k=1}^{L} e^{\lambda_k T} v_k u_k^T \in \mathbb{R}^{N \times N}$ is a rank L matrix that represents the leading dynamics of the system modeled by Eq. (1) and \tilde{x}_0^{p+1} is the approximated new tentative solution computed by the Newton method.

Apparently, the “truncated” matrix \tilde{M} can be derived only after having performed the complete matrix product (3). On the other hand the leading dynamics of the circuit can be computed by exploiting properties of the QR decomposition as shown in the sequel. Consider the product shown in Eq. (3) performed using only the first $S_1 < S$ time samples. Consider the $Q_{1,S1}R_{1,S1} = M_{1,S1}P_{1,S1}$ QR decomposition where $R_{1,S1} \in \mathbb{R}^{N \times S_1}$ is upper triangular and $P_{1,S1}$ is a permutation matrix sorting the diagonal of $R_{1,S1}$ in decreasing order. We set to 0 the r_{ij} entries of R such that $r_{ij} < \alpha |r_{1,1}|$. It can be shown that $|r_{ij}| > |r_{ij}|$ with $j > i$ so that $N - L$ last columns of $Q_{1,S1}$ can be dropped in the subsequent left matrix product performed to compute the fundamental matrix. A QR decomposition can be performed after a predefined number of integration time steps. The structure of R can be thus checked to see if other columns of the related Q matrix can be dropped. At the end of this process, i.e. at the end of the integration process along the T working period, we have performed no more than $S \times (N - M) \times N^2$ matrix by vector products (as with gmres), with the advantage of having computed a version of \tilde{M} representing the leading dynamics of the system, i.e. that has the same $(N - L)$ eigenvalues and eigenvectors of the M fundamental matrix and, finally, with the advantage of avoiding the storage of partial matrices or solutions.

3 Simple simulation example

The schematic of a simple example circuit is shown in Fig. 1. It is a nonlinear ladder circuit with 4 state variables. The working period of the circuit is $T = 10$ ms. After $T/4$, a QR decomposition of $M_{1,S1}$ gives

$$R_{1,S1} = \begin{bmatrix}
-0.1 & 0 & -0.1 & -0.1 \\
0 & 9.7 \times 10^{-4} & -7.0 \times 10^{-4} & 9.2 \times 10^{-4} \\
0 & 0 & -2.0 \times 10^{-6} & 8.6 \times 10^{-7} \\
0 & 0 & 0 & 1.8 \times 10^{-9}
\end{bmatrix}$$

Setting $\alpha = 10^{-3}$, the last two rows of $R_{1,S1}$ can be set to 0, i.e. the leading dynamics is adequately spanned by the first two columns of $Q_{1,S1}$. The maximum relative error in computing the Floquet multipliers of M is less than 6×10^{-9} showing the effectiveness of the proposed method. This approach has been applied also to the oscillator described in [4] characterized by about 500 state variables. With the proposed approach, choosing $\alpha = 10^{-7}$, the leading dynamics is spanned by only 41 columns of Q just after $T/10$.

References

On an integral equation method for the electromagnetic scattering of biperiodic structures

Beatrice Bugert and Gunther Schmidt

Weierstrass Institute, Mohrenstr. 39, 10117 Berlin, Germany bugert@wias-berlin.de, schmidt@wias-berlin.de

Summary. In this note we study an integral formulation for electromagnetic scattering by a biperiodic structure. It is derived from the time-harmonic Maxwell equations via potential methods by the combined use of a Stratton-Chu integral representation and an electric potential ansatz. We obtain results on existence and uniqueness for the solutions of this singular integral equation and give an outlook on the equation’s numerical treatment via the fast multipole Boundary Element Method.

1 Introduction

Studying an integral formulation for electromagnetic scattering by a biperiodic structure generalizes the results from [5] where the equivalent problem for one-periodic structures was treated. Up to now, both in the one- and the biperiodic case several integral formulations have been proposed and implemented (e.g. [4]). We derive a new formulation by adapting the approach of [2], in which instead of a periodic structure a bounded obstacle was focussed on.

2 The electromagnetic scattering problem

Let Σ be a smooth non-selfintersecting surface which is 2π-periodic in both x_1- and in x_2-direction and separates two regions $G_{\pm} \subseteq \mathbb{R}^3$ filled with materials of constant electric permittivity ε_{\pm} and magnetic permeability μ_{\pm}. The surface is illuminated from G_{+} by an electromagnetic plane wave at oblique incidence

$$ (E^i, H^i) = (p, s) e^{i(\alpha_1 x_1 + \alpha_2 x_2 - \alpha_3 x_3)} e^{-i\omega t}, $$

which is $\bar{\alpha}$-quasiperiodic\footnote{In the following the tilde indicates the orthogonal projection of a three-dimensional vector on the (x_1, x_2)-plane.} in x_1 and in x_2 of period 2π, i.e. satisfies the relation

$$ u(\tilde{x} + 2\pi, x_3) = e^{2\pi i(\alpha_1 + \alpha_2)} u(x). $$

The total fields are given by

$$ E_+ = E^i + E^{\text{refl}}, \quad H_+ = H^i + H^{\text{refl}}, $$

$$ E_- = E^{\text{tran}}, \quad H_- = H^{\text{tran}}. $$

and - after dropping the factor $e^{-i\omega t}$ - satisfy the time-harmonic Maxwell equations

$$ \text{curl} E = i\omega \mu H \quad \text{and} \quad \text{curl} H = -i\omega \varepsilon E, $$

just like the incident and the scattered fields. When crossing the surface the tangential components of the total fields are continuous

$$ n \times (E_+ - E_-) = 0, \quad \text{on} \ \Sigma, $$

$$ n \times (H_+ - H_-) = 0, \quad \text{on} \ \Sigma, $$

where n is the unit normal to the interface Σ. As the domain is unbounded, we must additionally impose the so-called outgoing wave condition at infinity

$$ (E^{\text{refl}}, H^{\text{refl}}) = \sum_{n \in \mathbb{Z}^2} (E^i_n, H^i_n) e^{i(\alpha_1 \tilde{x} + \beta_n x_3)}, $$

$$ (E^{\text{tran}}, H^{\text{tran}}) = \sum_{n \in \mathbb{Z}^2} (E^i_n, H^i_n) e^{i(\alpha_1 \tilde{x} - \beta_n x_3)}, $$

where $n = (n_1, n_2)^T, \tilde{x} = (x_1, x_2)^T, \alpha_0 = (\alpha_1 + n_1, \alpha_2 + n_2) \text{ and } \beta_n = \sqrt{\kappa_n^2 - |\alpha_0|^2}$ with $\kappa_n^2 = \omega^2 \varepsilon_n \mu_n$. We shall assume $\kappa_n > 0, \text{Re} \kappa_n > 0, \text{Im} \kappa_n \geq 0$. As we can easily derive the magnetic field in dependence of the electric field E as $H = -\frac{i}{\omega \mu_n} \text{curl} E$, we are now interested in finding vector fields E satisfying [5-6]

such that

$$ E_-, \text{curl} E \in (L^2_{\text{loc}}(\mathbb{R}^3))^3. $$

The $\bar{\alpha}$-quasiperiodicity of the incident waves motivates these two fields to be $\bar{\alpha}$-quasiperiodic themselves.

3 Boundary integral formulation

In order to solve the electromagnetic scattering problem introduced in section 2 we derive an equivalent integral equation via potential methods. For this, we combine a direct with an indirect method: in the domain G_+ above the grating surface Σ, we work with the quasiperiodic version of the Stratton-Chu integral representation and in the domain G_- below the grating surface, we make use of an electric potential ansatz. As it is common when working with periodic structures, we restrict our calculations to one period $\Gamma = \{ \tilde{x} \mid 0 < x_1, x_2 < 2\pi \}$ of the surface. Its one-sided limit from G_+ will be denoted by Γ_+.

135 SCEE2012
3.1 Derivation of the boundary integral equation

The potentials which provide \(\tilde{\alpha} \)-quasiperiodic solutions of the time-harmonic Maxwell equations are based on the \(\tilde{\alpha} \)-quasiperiodic fundamental solution

\[G_{\tilde{x},\tilde{\alpha}}(x) = \frac{i}{8\pi^2} \sum_{n \in \mathbb{Z}^2} \frac{\delta(x-y)}{\partial_n}. \]

The single layer potential \(S_{\tilde{x},\tilde{\alpha}} \) is then given by

\[(S_{\tilde{x},\tilde{\alpha}}u) (x) = \int_{\Gamma} G_{\tilde{x},\tilde{\alpha}}(x-y)u(y) \, d\sigma(y), \]

for \(x \in \mathbb{R}^3 \setminus \Gamma \). We define the electric potential \(\psi_{E_{\tilde{x}}} \) generated by \(j \in H^{1/2}_{\tilde{x},\tilde{\alpha}}(\text{div}\Gamma,\Gamma) \) as

\[\psi_{E_{\tilde{x}}}(x) = \kappa^{-1} \text{curl curl} S_{\tilde{x},\tilde{\alpha}}j \]

and the magnetic potential \(\psi_{M_{\tilde{x}}} \) generated by \(m \in H^{1/2}_{\tilde{x},\tilde{\alpha}}(\text{div}\Gamma,\Gamma) \) as

\[\psi_{M_{\tilde{x}}}(x) = \kappa^{-1} \text{curl curl} S_{\tilde{x},\tilde{\alpha}}m. \]

Defining the Dirichlet traces \(\gamma_D \) and the Neumann traces \(\gamma_N \)

\[\gamma_D^+ u = (n \times u)|_{r_+} - \gamma_D^- u = \kappa^{-1} \gamma_D + n \times u)|_{r_-} \]

as well as

\[[\gamma_D] = \gamma_D^+ - \gamma_D^-, \quad [\gamma_N] = \frac{1}{2} (\gamma_N + \gamma_N^-), \]

\[[\gamma_N^+] = \gamma_N^+ - \gamma_N^- \quad [\gamma_N] = -\frac{1}{2} (\gamma_N + \gamma_N^-), \]

we have the following jump relations for the electric and magnetic potential:

\[[\gamma_D^+] \psi_{E_{\tilde{x}}^+} = 0, \quad [\gamma_N^+] \psi_{E_{\tilde{x}}^-} = -I, \]

\[[\gamma_N^+] \psi_{M_{\tilde{x}}^+} = 0, \quad [\gamma_D^+] \psi_{M_{\tilde{x}}^-} = -I. \]

With the Stratton-Chu ansatz

\[E_{\text{refl}} = \psi_{E_{\tilde{x}}^+}, \quad \psi_{E_{\tilde{x}}^-} = -I \]

in \(G_+ \) and the ansatz

\[E_{\text{trans}} = \psi_{E_{\tilde{x}}^+} j \]

in \(G_- \), the use of the transmission conditions \[\text{(6)}, \text{(7)} \]

as well as the use of the jump relations \[\text{(18)}, \text{(19)} \]

for the electric and magnetic potential lead to the singular integral equation

\[A_{\tilde{\alpha}} = \begin{bmatrix} \rho_1 C_{\tilde{\alpha}}^+ \left(M_{\tilde{\alpha}}^- + \frac{1}{2} I \right) + \left(M_{\tilde{\alpha}}^+ + \frac{1}{2} I \right) C_{\tilde{\alpha}}^- \end{bmatrix} j, \]

\[= -\gamma_D E^1, \]

\[\text{(22)} \]

where \(\rho_1 = \frac{\mu_{\tilde{x}}}{\mu_{\tilde{\alpha}}} \) and

\[C_{\tilde{\alpha}}^\pm = \{ \gamma_D \} \psi_{E_{\tilde{x}}^\pm} = \{ \gamma_N_{\tilde{x}} \} \psi_{M_{\tilde{x}}^\pm}, \]

\[M_{\tilde{\alpha}}^\pm = \{ \gamma_D \} \psi_{E_{\tilde{x}}^\pm} = \{ \gamma_N_{\tilde{x}} \} \psi_{M_{\tilde{x}}^\pm}. \]

3.2 Properties of the boundary integral equation

We can show that the singular integral operator \(A_{\tilde{\alpha}} \) is Fredholm with index 0 and that under certain conditions there exists a unique solution of the integral equation \[\text{(22)}. \]

The proofs are based on techniques used in \[\text{[3], [2] and [5]}. \]

Theorem 1 (Fredholmness). Assume that the electric permittivity \(\varepsilon_+ \) and the magnetic permeability \(\mu_- \) satisfy \(1 + \mu_+ \mu_- \neq 0 \) and \(1 + \varepsilon_+ \mu_- \neq 0 \). Then \(A_{\tilde{\alpha}} \) is a Fredholm operator of index zero on \(H^{-1/2}_{\tilde{x},\tilde{\alpha}}(\text{div}\Gamma,\Gamma) \).

Theorem 2 (uniqueness). Assume \(\text{Im} \varepsilon_+, \text{Im} \mu_- \geq 0 \) with \(\text{Im} (\varepsilon_+ + \mu_-) \geq 0 \). Then \[\text{(22)} \] has at most one solution if \(\ker \{ \psi_{E_{\tilde{x}}^+} \} = \{ 0 \} \).

Theorem 3 (existence). Let \(\varepsilon_+, \mu_- \in \mathbb{R}_+ \) and suppose the conditions of Theorem \[\text{(7)} \] are satisfied. If the electric potential \(\psi_{E_{\tilde{x}}^+} \) is invertible, then there exists a solution \(j \in H^{-1/2}_{\tilde{x},\tilde{\alpha}}(\text{div}\Gamma,\Gamma) \) of \[\text{(22)} \].

4 Numerical treatment and prospects

Considering the future implementation of the integral equation \[\text{(22)} \] we will use the Boundary Element Method which reduces the spatial dimensionality by one compared to the Finite Element Method. Furthermore, we want to accelerate occurring multiplications via a fast multipole method. A crucial issue is the evaluation of the \(\tilde{\alpha} \)-quasiperiodic Green’s function \[\text{(11)}. \]

The use of Ewald’s method seems to be promising in this context (cp. \[\text{[1]} \]).

So far we have only studied the electromagnetic scattering problem for smooth surfaces \(\Sigma \), but want to extend our results to Lipschitz surfaces with edges and corners.

References

Electro-hydrodynamic numerical modelling of corona discharge

D. Cagnoni1,2, F. Agostini1, T. Christen1, C. de Falco2, N. Parolini2, and I. Stevanović1

1 ABB Switzerland Ltd., Corporate Research, CH-5405 Baden-Dättwil, Switzerland
2 Dipartimento di Matematica “F. Brioschi”, Politecnico di Milano, via Bonardi 9, 20133 Milano, Italy

Summary. Prediction of cooling by forced convection due to corona-induced ion flow in an electro-hydrodynamic (or EHD) simulation requires a reliable corona electrode model, which has to be formulated as a boundary condition (BC) to the EHD partial differential equations. We discuss and compare four different BCs in the context of finite-volume methods (FVM). It turns out that the optimum choice depends on the given physical information.

1 EHD differential and numerical model

Corona discharge refers to field induced gas ionization near an electrode, e.g., a thin wire (emitter), in series with the dark discharge associated with the ion drift towards counter electrodes (collector). The ion motion induces a drag of the neutral gas, and can be used to cool the collector at the same time. The associated equations consist of the Poisson equation for the electric potential \(\phi \), and the balance equations for the densities for ion number \(N_p \), mass \(\rho \), momentum \(\rho v \), and energy (written in terms of the temperature \(T \)). In the Boussinesq approximation, they read

\[
-\nabla \cdot (\varepsilon \nabla \phi) = q N_p \tag{1}
\]

\[
\frac{\partial N_p}{\partial t} = -\nabla \cdot \left(\frac{j}{q} \right) = -\nabla \cdot \left((bE + v) N_p + a \nabla N_p \right) \tag{2}
\]

\[
\nabla \cdot v = 0 \tag{3}
\]

\[
\frac{Dv}{Dt} = v \Delta v - \nabla \left(\frac{p}{\rho} - g \cdot x \right) + f_B + f_{\text{EHD}} \tag{4}
\]

\[
\rho C_V \frac{DT}{Dt} = k \Delta T + j \cdot E - f_{\text{EHD}} \cdot v \tag{5}
\]

where \(\varepsilon \) is the electric permittivity, \(q \) the ion charge, \(E = -\nabla \phi \) the electric field, \(b \) the ion mobility, \(a \) the diffusion constant, \(D_B = \frac{\partial}{\partial t} + v \cdot \nabla \) the material derivative for the velocity field \(v \), \(\rho \) the viscosity, \(p \) the pressure, \(g \) the gravitational acceleration, \(f_B = \beta (T_{\text{ref}} - T) \) the buoyancy force, and \(f_{\text{EHD}} = q N_p E \) the Coulomb force, assumed to be distributed over all gas particles via scattering. The electric current density \(j \) consists of drift, convection, and diffusion currents.

The system of coupled, nonlinear PDEs has to be solved for given initial and boundary conditions. Prior to discussing the latter, we summarize the global solution procedure. First, in a Gauss-Seidel-like approach, the solution is determined progressively for the block \(\phi - N_p \), then for the block \(p - v \) and finally for \(T \). Because of the weak influence of each block to the preceding ones, only one iteration per time step is performed. Electrostatics equations are solved with nonlinear formulation to reach convergence (for details, see [2]), while Navier-Stokes block is solved via a SIMPLE-like projection method (\(\lambda(v) \) being a coefficient depending on both the estimated velocity and the grid). Here we sketch how this iteration is built:

- until \(\int_\Omega (N_p^{(k-1)} e^{(k,0)} - \phi^{(k,0)} - N_p^{(k-1)}) < \text{tol} \)
- until \(\| \phi^{(k,n-1)} - \phi^{(k,n)} - N_p^{(k-1)} \|_\infty < \text{tol} \)
- solve \(-\nabla \cdot (\varepsilon \nabla \phi) = q N_p^{(k-1)} e^{(k,0)} - \phi^{(k,0)} \)
- linearized around \(\phi^{(k,n-1)} \)
- solve \(q \frac{\partial N_p}{\partial t} = -\nabla \left(\frac{j}{q} \phi^{(k,n)} N_p^{(k)} \right) \)
- solve momentum equation (4) for \(v^{(0)} \)
- until \(\int_\Omega \nabla \cdot v^{(j)} < \text{tol} \)
- solve \(-\nabla \cdot (\lambda(v^{(j-1)}) \nabla p^{(j)}) = \nabla \cdot v^{(j-1)} \)
- correct \(v^{(j)} = v^{(j-1)} - \lambda(v^{(j-1)}) \nabla p^{(j)} \)
- solve temperature equation (5)

2 Corona discharge boundary conditions

We restrict our discussion to the BC for \(N_p \) at the corona electrode, comparing four different BC types. For the rest of the boundaries, instantaneous recombination BC \(\mathbf{n} \cdot \nabla N_p = 0 \) is applied at counter electrodes, while in all other cases well-known standard BCs can be used.

The first approach we present is the natural condition, namely imposing the normal flux \(j_n \) associated to \(E \) to be uniform; this approach is very accurate when geometry is symmetric and one knows the actual current from measurements, but has the drawback of being totally unpredictable. Nonetheless, this approach is sometimes used with arbitrary geometries, defining an active surface that emits the necessary current density.

The generally accepted Kaptsov’s hypothesis (see [5]) states that \(E_n = \mathbf{n} \cdot E_{\text{on}} \), namely the field remains constant at the (virtual) electrode once the corona discharge is triggered. A value for \(E_{\text{on}} \) can be computed from Peek’s law (see e.g. [6], ch. 4) and allows to define the active region as the part of the boundary where \(E_n > E_{\text{on}} \) holds.

For having a predictive condition, instead, one needs to somehow enforce a constitutive law linking...
Emitting electrode
Duct (grounded)
Collecting grid
(14 grounded wires)

Collecting electrode
Insulating flat plate
Collecting stripe (grounded)

Fig. 1. Geometries from [4] (left) and from [3] (right).

J_n or N_p with E_n. We choose to adopt the second, simpler formulation, namely to impose $F_1(E_n, N_p) = 0$ to be satisfied on the boundary. Our first approach, given in [11], is based on a simplified physical model of the virtual contact which takes into account charge carriers injected solely from the active surface (with a saturation current density $j_{sat} H(E_n - E_{on})$, where $H(\cdot)$ is the Heaviside step function), and backscattered carriers (with current density given by $-qN_p w$ at the contact, where w is a characteristic velocity). Neglecting diffusion current at the electrode, this approach can be interpreted as imposing the relation

$$F_1(E_n, N_p) = qN_p (bE_n - w) - j_{sat} H(E_n - E_{on}) = 0 \quad (6)$$

Choice for the parameters j_{sat} and w needs to guarantee that the injected charge can naturally force $E_n = E_{on}$, otherwise current density saturates to $j_n = j_{sat}$ and space charge controlled current (SCCC) regime is not reached anymore.

Our second approach is to model the boundary as an ideal rectifying diode, in which no ion density is flowing under the E_{on} threshold, while every N_p value is possible when $E_n = E_{on}$. Explicitly, this approach is equivalent to enforcing the following:

$$F_2(E_n, N_p) = N_p \left(1 - \left(\frac{E_n}{E_{on}} \right)^\beta \right) = 0 \quad (7)$$

$\beta \in [0, 1]$ being a smoothing factor. This relation strongly enforces both N_p to vanish in the other non active portion of the electrode, and E_n to match E_{on} in the active portion.

Our last approach assumes a constitutive relation which is a more regular version for the former one:

$$F_3(E_n, N_p) = N_p - N_{ref} \left(\exp \left(\frac{E_n}{E_{ref}} \right) + 1 \right) = 0 \quad (8)$$

where N_{ref} and E_{ref} are a device-off ion density and a reference electric field. The choice of these two values can thus be made independently from the particular case (using e.g. air conductivity for N_{ref}).

3 Results and conclusions

As examples, a wire-to-grid geometry [4] and a wire-to-plate geometry [3] have been investigated (Fig. 1).

The former consists of a duct with a grounded grid in the middle (both collectors), and an emitter placed upstream. The E_{on} value is determined from the experimental onset voltage (4 kV). Simulations show how the natural condition matches exactly the experimental value, and the iterative condition as in [7] still captures well the electrical behavior. One may thus consider that in cases like this, even when lacking measured currents, the ideal diode model is still appropriate.

The latter geometry has a heated plate with a collecting stripe and the emitter is lifted from the plate. As shown in Fig. 3 this case is not as well reproduced as the former, due to the highly nonuniform E_n on the electrode. This issue may be solved with a parameter optimization, which has not yet been undertaken in the present study. The current, being the most influential parameter for for the fluid dynamics and thermal computing, was predicted with acceptable accuracy.

References

Simulation of a double-gate MOSFET by a non parabolic energy-transport subband model based on MEP including crystal heating

V. D. Camiola¹, G. Mascali², and V. Romano¹

¹ University of Catania, Italy camiola@DMI.unict.it, romano@DMI.unict.it
² University of Calabria, and INFN-Gruppo collegato di Cosenza, Italy mascali@unical.it

Summary. A nanoscale double-gate MOSFET is simulated by using a model based on the maximum entropy principle (MEP) by including the heating of the crystal lattice. The influence of this latter on the electrical performance of the device is discussed.

1 Mathematical model and simulations

The main aim of the paper is to simulate the nanoscale silicon double gate MOSFET (hereafter DG-MOSFET) reported in Fig. [1] by including also the crystal heating which can influence the electrical properties of the device and pose severe restrictions on its performance. In fact the phonons emitted by hot electrons create a phonon hot spot which increases the generated power density of the integrated circuits. This effect is becoming crucial by shrinking the dimension of the devices which is now below 100 nm, a length comparable with the wavelength of acoustic phonons [1, 2].

We consider a DG-MOSFET with length \(L_x = 40 \) nm, the width of the silicon layer \(L_x = 8 \) nm and the oxide thickness \(t_{ox} = 1 \) nm. The \(n^+ \) regions are 10 nm long. The doping in the \(n^+ \) regions is \(N_D(x) = N_{D/2}^{10^20} \) cm\(^{-3} \) and in the \(n \) region is \(N_D(x) = N_{D/5}^{10^{15}} \) cm\(^{-3} \), with a regularization at the two junctions by a hyperbolic tangent profile.

Due to the symmetries and the dimensions of the device, the transport is, within a good approximation, one dimensional and along the longitudinal direction with respect the two oxide layers, while the electrons are quantized in the transversal direction. Six equivalent valleys are considered with a single effective mass \(m^* = 0.32 m_e \), \(m_e \) being the free electron mass.

Since the longitudinal length is of the order of a few tens of nanometers, the electrons as waves achieve equilibrium along the confining direction in a time which is much shorter than the typical transport time. Therefore we adopt a quasi-static description along the confining direction by a coupled Schrödinger-Poisson system which leads to a subband decomposition, while the transport along the longitudinal direction is described by a semiclassical Boltzmann equation for each subband.

Numerical integration of the Boltzmann-Schrödinger-Poisson system is very expensive from a computational point of view, for computer aided design (CAD) purposes (see references quoted in [3, 4]) In [3] we have formulated an energy transport model for the charge transport in the subbands by including the non parabolicity effects through the Kane dispersion relation. The model has been obtained, under a suitable diffusion scaling, from the Boltzmann equations by using the moment method and closing the moment equations with the Maximum Entropy Principle (MEP). Scatterings of electrons with acoustic and non polar optical phonons are taken into account. The parabolic subband case has been treated and simulated in [4].

The crystal heating is included adding a further equation for the lattice temperature \(T_L \) in the same spirit as in ref. [5, 6]

\[
ρ_C v T_L \frac{∂T_L}{∂t} - \text{div}[K(T_L) \nabla T_L] = H, \tag{1}
\]

with \(ρ \) and \(C_v \) silicon density and specific heat respectively. \(H \) is the phonon energy production given by

\[
H = -(1 + P_3) n C_W + P_3 J \cdot E, \tag{2}
\]

where \(P_3 \) plays the role of a thermopower coefficient, \(n C_W \) is the electron energy production term with \(n \) electron density, and \(J \) is the current. The electron density is related to the surface density in each subband by the relation

\[
n = \sum_\nu \rho_\nu |\phi_\nu|^2
\]

where \(\phi_\nu \) are the envelope functions obtained solving the Schrödinger-Poisson system. In [5] a more general model for \(H \) has been proposed.

We stress that the lattice temperature enters into the electron-phonon scattering and in turn in the production terms of the balance equations for the electron variables. The main aim of the present paper is to address the importance of the crystal heating on the electric performance of the device.

A suitable modification of the numerical scheme for the MEP energy transport-Schrödinger-Poisson
system developed in [4] is proposed which includes also the discretization of the lattice temperature balance equation via an ADI approach. Since the characteristic time of the crystal temperature is about one or two orders of magnitude longer than that of electrons, a multirate time step method is employed as in [6].

In the figures we report some preliminary results. It is possible to see a tremendous raise of the crystal energy k_BT_L, which at room temperature is about 0.0259 eV, near the drain where the electron energy has its maximum values due to the high electric field present there. It is likely that the lattice temperature reaches the silicon melting temperature. This poses severe restrictions on the source/drain and source/gate voltages with stringent design constraints.

Acknowledgement. V.D.C. and V. R. acknowledge the financial support by the P.R.I.N. project 2010 Kinetic and macroscopic models for particle transport in gases and semiconductors: analytical and computational aspects and by P.R.A. University of Catania. G. M. acknowledges the financial support by P.R.A., University of Calabria.

References

Fig. 1. Schematics representation of the simulated DG-MOSFET

Fig. 2. Electron density when the applied potential between source and drain is $V_{SD}=0.1$ V and source and gate are equipotential

Fig. 3. Electrostatic energy when the applied potential between source and drain is $V_{SD}=0.1$ V and source and gate are equipotential

Fig. 4. Electrostatic energy when the applied potential between source and drain is $V_{SD}=0.1$ V and source and gate are equipotential

1157, 2006.

Summary. A recipe is introduced for the determination of streamer inception regions and streamer propagation paths from the electric background field. The method is based on the equivalence of the streamer inception integral with a first order partial differential equation (PDE). It can be easily used in modern commercial multi-physics simulation tools, and circumvents the cumbersome search for critical field lines and their postprocessing.

Introduction

Streamer Inception (SI) at an electrode and subsequent streamer propagation (SP) towards the counter electrode are initial steps of dielectric gas breakdown in nonuniform high electric fields [1]. Often, the aim of electric field calculations is to identify the locations where SI can occur and to determine how far streamers can propagate. This note introduces a simple procedure to calculate SI and SP from quasi-static electric background fields using common SI and SP criteria [1, 2].

We thus assume that the solution of the Laplace equation for the electric potential $U(x)$ in the compact spatial region of interest, $\Omega \subset \mathbb{R}^3$, is given for appropriate boundary conditions. The boundary of Ω is denoted by $\partial \Omega$. Let the potential be positive at the electrode under consideration, $\partial \Omega_0 \subset \partial \Omega$, i.e., $U_0 = U(x) > 0$ for $x \in \partial \Omega_0$ (Dirichlet boundary condition). Assume further that the potential at the counter electrode(s) is smaller, for instance grounded, such that the field lines of the electric field, $E = -\nabla U$, point away from $\partial \Omega_0$. The SI criterion is associated with the critical electron avalanche size and is formulated as an integral condition to the effective ionization coefficient $\alpha(E)$ along a field-line path γ where α is positive and which ends at $\partial \Omega_0$ [1, 2].

$$\int_\gamma \alpha(E) ds \geq C_{\text{crit}}$$ \hspace{1cm} (1)

with field strength $E(x) = |E|$. For a field distribution $E(x)$ in an arbitrary geometry, it is not a priori obvious which are the critical field lines satisfying Eq. (1); they are not necessarily related to electrode locations with maximum field.

The required search for and extraction of information on field lines from electric simulations for realistic geometries, as it is needed for (1), is usually not a feature provided by typical commercial E-field simulation tools. But we will show that there is a simple way to determine the critical SI region $\Gamma \subset \Omega$, and thus the critical electrode region, $\partial \Gamma_0 = \Gamma \cap \partial \Omega_0$, without cumbersome postprocessing.

Streamer Inception (SI)

We introduce the scalar field variable $\phi(x)$, which satisfies the 1st order PDE

$$- \mathbf{v} \cdot \nabla \phi = \alpha(E) \Theta(\alpha)$$ \hspace{1cm} (2)

where Θ is the Heaviside theta-function such that the right side vanishes for negative α, and

$$\mathbf{v}(x) = E / E$$ \hspace{1cm} (3)

is the normalized vector field along the field lines. Equation (2) means that the derivative of ϕ along the backward direction of the field lines (i.e., towards the electrode $\partial \Omega_0$), equals α. Hence the solution of Eq. (2) is the integral of α along field lines and equal to the streamer integral (1), provided $\phi = 0$ in regions where $\alpha \leq 0$. The latter condition is ensured by using a homogeneous Dirichlet boundary condition, $\phi = 0$, at the counter electrode(s), where the flow lines of \mathbf{v} end. The theta-function in Eq. (2) ensures integration only for $\alpha \geq 0$. The SI region Γ, where streamers will emerge, is then obtained from $\phi(x) \geq C_{\text{crit}}$. Note that because $\Gamma \subset \Omega$ is a volume region, the procedure allows also the determination of electrodeless SI.

Streamer Propagation (SP)

A SP model has to predict where and how far the emerging streamers will go. If they reach the counter electrode, dielectric breakdown may occur. Streamer-to-leader transition is not discussed here [4]. A simple SP model makes use of the observation that a streamer length increase requires a roughly constant voltage drop, which can be associated with a field E_s along
the streamer path. The potential drop along a streamer of length s is then [4]

$$U_s(s) = U_{s,0} + E_s s$$ (4)

where $U_{s,0}$ can be interpreted as the streamer head voltage. If it is assumed that streamers follow field lines, the path can be found by solving the ordinary differential equation (ODE) for the location $x(t)$ of, say, the streamer head

$$\frac{dx}{dt} = v(x) h(\Delta U, t)$$ (5)

with initial condition $x(0) \in \partial \Gamma$ (or, here, Γ_0) for $t = 0$, and $\Delta U = U_0 - U(x)$ is the voltage drop along the streamer line. Note that t is equal to the streamer length s because $|v| = 1$ (v is not the true streamer velocity but its direction vector; the true speed, which is typically of the order of mm/ns [3] is not needed for determining the streamer length for many practical cases). The prefactor $h(\Delta U, t)$ is either 1 or 0, depending on whether the SP criteria is satisfied or not. The prefactor h ensures that the streamer stops if the local potential drop is insufficient for further propagation. For brevity, the considerations are here restricted to $U_{s,0} = 0$, where $h = \Theta(\Delta U - E_s s)$.

The assumption that streamers follow field lines may not always be valid, as was critically discussed in Refs. [4, 5]. Nevertheless, generalized models might be taken into account in our simple propagation model by a redefinition of $v(x)$ in Eq. (5) [4].

Results

The incorporation of our SI approach in typical commercial multi-physics simulation tools, which usually solve 2nd order PDEs, requires a mimicry of the 1st order PDE (2) with a 2nd order PDE of the form $\Delta \phi - v \cdot \nabla \phi = \alpha(E)$. The structural difference between them leads to a singularly perturbed problem (i.e., the limit $D \rightarrow 0$ is not equivalent to $D = 0$). However, the solution of Eq. (2) can be approximated with sufficient accuracy for practical purposes, if D is small enough and the boundary conditions to ϕ are appropriately chosen. In particular, the disturbance of the solution by the boundary condition at $\partial \Omega_0$ should be negligibly small. Because for $D = 0$ one has $\partial_n \phi = \alpha$ at $\partial \Omega_0$, one must have $D \ll 1 / |\partial_n \ln(\alpha) \partial_t E|$, and the boundary condition must be $n \cdot \nabla \phi = -\alpha$, where n denotes the surface normal vector at $\partial \Omega_0$.

As an example, we consider a tip-plate geometry in normal air, where [6] $\alpha = p[k(L^2 - A) - A]$ with $k = 1.6 \text{ mmbar/kV}^2$, $A = 2.2 \text{ kV/mm bar}$, $\Lambda = 0.3 \text{ l/mm bar}$, $p = 1 \text{ bar}$, tip-plate distance 19 cm, tip radius 1 cm, and $E_s = 0.5 \text{ kV/mm}$. A result for $U_0 = 80 \text{ kV}$ is shown in Fig. 1: the SI voltage, when the first streamer appears is ca. 67 kV. The SI region is visible as the small dark area in front of the tip. The voltage when the first streamer crosses the gap is for this case $U_{bd} = 95 \text{ kV}$.

Fig. 1. Tip-plate geometry with simulated equipotential curves, SI region in front of the tip (insert), and streamer lines (simulation tool: Comsol; streamer lines with “particle tracing” feature).

Conclusion

Streamer lines associated with the common SI and SP criteria used in electrical engineering, can be calculated directly from standard multi-physics simulation tools without cumbersome postprocessing of electric field line data, provided the tool exhibits at solvers for an additional linear PDE (for SI) and an ODE (for SP).

References

Frequency Parameterized Models for Planar On-Chip Inductors

Gabriela Ciuprina, Daniel Ioan, Cosmin-Bogdan Diță, and Mihai-Iulian Andrei

“Politehnica” University of Bucharest, Electrical Engineering Department, Numerical Methods Lab., Spl. Independentei 313, Bucharest, Romania, lmn@lmn.pub.ro

Summary. The paper proposes an efficient method for the modeling of high frequency electromagnetic field effects, such as skin or proximity effects, inside on-chip metallic conductors. Compact sub-models obtained by using an electromagnetic field discretization approach based on the Finite Integration Technique in which frequency dependent Hodge operators are used, are connected to magnetic circuits that describe inductive couplings.

1 Frequency Dependence

Designers of integrated circuits require models of passive components which describe all relevant electromagnetic field effects at high frequency. These effects are quantified by the Maxwell equations of the electromagnetic field. In the Finite Integration Technique (FIT), by applying the global form of electromagnetic field equations on the mesh elements (elementary faces and their borders), a system of differential algebraic equations, called Maxwell Grid Equations (MGE) is obtained.

Due to high conductivity ($\sigma \gg \omega \epsilon$), the electromagnetic field inside metallic conductors can be considered a magneto-quasi-static (MQS) one. MGE for MQS regime are combined with the Hodge operators, which describe the material behavior

$$\mathbf{B} = \mu \mathbf{H}, \quad \mathbf{J} = \sigma \mathbf{E} \quad \Rightarrow \quad \varphi = \mathbf{M}_\mu \mathbf{u}_m = \mathbf{M}_\varphi^{-1} \mathbf{u}_m, \quad \mathbf{i} = \mathbf{M}_\sigma \mathbf{u}_e,$$

where the following global variables have been used: electric and magnetic voltages \mathbf{u}_e, \mathbf{u}_m, and magnetic fluxes φ and conduction currents \mathbf{i}, that are associated to the grids elements in a coherent manner.

In the classical FIT approach, the discrete Hodge operators \mathbf{M}_φ and \mathbf{M}_σ and are constant diagonal matrices, which can be built by independent averaging of material constants $\nu = 1/\mu$ and σ over each cell.

In order to describe field effects at high frequency such as skin and proximity effects, the cell dimensions have to be much less than the skin depth $\delta = \sqrt{2/(\omega \mu \sigma)}$, which is 6.7 μm for Cu at 100 GHz and 15 μm at 20 GHz. In order to keep the number of cells at a reasonable level, non-uniform grids could be used, with peripheral cells smaller than internal ones. Even so, the number of cells required by a reasonable accuracy can be relatively high. To avoid this drawback, it was proposed to replace the Hodge operators used in classical FIT with others appropriate for the description of high field effects in conductors.

By solving the complex Helmholtz equation for the electric field in a rectangular homogeneous cell having the conductivity σ and the permeability μ, of dimensions: a (along the Ox axis), $2b$ and $2c$ (along Oy and Oz, respectively), we found that the complex admittance of the cell along the OX direction is

$$Y = \frac{8}{\pi^2 R_0} \sum_{k=1}^{\infty} \frac{1}{(2k-1)^2} \left[\frac{\tanh(\lambda_k b)}{\lambda_k b} + \frac{\tanh(\mu_k c)}{\mu_k c} \right],$$

where $R_0 = a/(4\sigma bc)$ is the D.C. resistance of the analyzed cell along the Ox direction, and the complex numbers λ_k and μ_k are given by

$$\lambda_k = \sqrt{\gamma^2 + \frac{(2k-1)^2 \pi^2}{2c}}, \quad \mu_k = \sqrt{\gamma^2 + \frac{(2k-1)^2 \pi^2}{2b}},$$

where $\gamma^2 = i\omega \mu \sigma$ is the complex diffusion constant in the conductor. Relation (3) does a smooth connection between the D.C. value R_0 and the value given by a strong skin depth formula $a/(4(b+c)\delta)$ (Fig. 1).

The first results carried out in FIT with FredHO on a simple test case having an analytical solution taken as reference, are given in Table 1 and Fig. 1 and show its efficiency both with respect to the computational effort and error. FredHO is able to catch not only the dependence of the A.C. resistance with respect to the frequency, but also the frequency dependence of the conductor inner inductivity.

![Fig. 1. Dependence of the A.C. resistance $R_{AC} = \text{real}(1/Y)$ with respect to the frequency.](image-url)
Table 1. Validation of FIT with FredHO

<table>
<thead>
<tr>
<th></th>
<th>No.</th>
<th>Relative DoFs. error [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytic</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Classical FIT, uniform grid</td>
<td>770</td>
<td>31</td>
</tr>
<tr>
<td>Classical FIT, non-uniform grid</td>
<td>667</td>
<td>3</td>
</tr>
<tr>
<td>FIT with FredHO</td>
<td>5</td>
<td>0.0006</td>
</tr>
</tbody>
</table>

Fig. 2. Frequency characteristic - with or without FredHO.

3 Conclusion

In frequency domain simulation, high frequency field effects can be taken into consideration in a very effective manner, if the Hodge operators depend on the frequency. From the computational resources point of view, this is more efficient than using a fine discretization grid inside the conductors, even if this implies some matrix re-assembling at every frequency sample. In this paper this technique is combined with the use of magnetic circuits describing inductive effects in order to obtain compact models for planar inductors. Our presentation will describe in detail this technique and will show results for real benchmarks.

Acknowledgement. The work has been co-funded by the Sectoral Operational Programme Human Resources Development 2007-2013 of the Romanian Ministry of Labour, Family and Social Protection through the Financial Agreements POSDRU/89/1.5/S/62557, POSDRU/88/1.5/S/61178, POSDRU/107/1.5/S/76813, and by UPB/CIEAC research funds.

References

Advanced Computer Methods for Grounding Analysis

Ignasi Colominas¹, José París¹, Xesús Nogueira¹, Fermín Navarrina¹, and Manuel Casteleiro¹

Group of Numerical Methods in Engineering-GMNI, Civil Engineering School, Universidade da Coruña, SPAIN
icolominas@udc.es

Summary. In this work we present the foundations of a numerical formulation based on the Boundary Element Method for grounding analysis developed for the authors in last years. Furthermore, a revision of main applications of this numerical approach to some problems in electrical engineering practice is shown.

Main goals of an earthing system are to safeguard that persons working or walking in the surroundings of the grounded installation are not exposed to dangerous electrical shocks and to guarantee the integrity of equipment and the continuity of the power supply under fault conditions. Thus, the equivalent resistance of the electrode should be low enough to assure the current dissipation mainly into the earth, while maximum potential differences between close points on the earth surface must be kept under certain maximum values defined by the safety regulations [1–3].

Although the electric current dissipation is a well-known phenomenon, the computing of grounding grids of large electrical substations in practical cases present some difficulties mainly due to the specific geometry of these grids [4, 5].

In the last years, the authors have proposed a numerical approach based on the transformation of the Maxwell’s differential equations onto an equivalent boundary integral equation. This integral approach is the starting point for the development of a general numerical formulation based on the Boundary Element Method which allows to derive specific numerical algorithms of high accuracy for grounding analysis embedded in uniform soils models [6]. On the other hand, the anomalous asymptotic behaviour of the clasical computer methods proposed for earthing analysis can be rigorously explained identifying different sources of error [4]. Besides, the Boundary Element formulation has been extended for grounding grids embedded in stratified soils [7, 8].

This methodology has been implemented in a CAD tool for grounding systems comprising all stages of the analysis: the preprocessing, the computing and the postprocessing, including the calculation of the characteristic safety parameters [9]. Furthermore, high-efficient convergence acceleration techniques have been also derived improving the earthing analysis for the case of layered soil models [10].

In 2005, the authors proposed a methodology for the analysis of a common and very important engineering problem in the grounding field: the problem of transferred earth potentials by grounding grids [11]. “Transferred earth potentials” refer to the phenomenon of the earth potential of one location appearing at another location with a contrasting earth potential. This transference occurs, for example, when a grounding grid is energized up to a certain voltage (typically, the Ground Potential Rise) during a fault condition, and this voltage —or a fraction of it— appears (or it is “transferred”) out to a non-fault site by a buried or semiburied conductors: communication or signal circuits, neutral wires, metal pipes, rails, metallic fences, etc., leaving the substation area.

The danger that can imply this potential transference to people, animals or the equipment is evident, especially because in some cases it is produced in un-
expected and non-protected areas [2]. While the prevention of these hazardous voltages has been traditionally carried out by combining a good engineering expertise, some crude calculations, and even field measurements, an accurate determination of the transferred earth potentials by grounding grids can be currently performed by using computer methods: in [12], the authors proposed a numerical methodology for the case of uniform soil models, and the generalization for stratified soil models was published in [13].

Figure [1] shows the plan of the grounding grid of an electrical substation and the situation of two tracks in the surroundings of the electrode, as an application example of transferred earth potential analysis. The grounding grid has 408 cylindrical electrodes (diameter: 12.85 mm), it is buried 0.80 m. and its maximum dimensions are 145×90 m². The resistivity of the soil is 60 Ωmm and the GPR considered is 10 kV. There are also two tracks—with a length of 130 m (diameter: 94 mm)—buried 0.10 m. Figures [2] and [3] show the potential distribution on the earth surface computed by using a Boundary Element formulation for transferred earth grounding voltages in uniform soil models. In both graphs, it can be observed the modification of the potential mapping on the earth surface due to the presence of the tracks and the voltage level induced on them.

Finally, most recently the authors have proposed a methodology for the analysis of grounding grids buried in soils which present some finite volumes with very different conductivities. In our opinion, these kinds of numerical models should allow for example the computational modeling of earthing systems of underground compact substations [14].

Acknowledgement. This work has been partially supported by the “Ministerio de Educación y Ciencia” (grants DPI2009 14546-C02-01 and DPI2010-16496), and by R&D projects of the Xunta de Galicia (grants CN2011/002, PGDIT09 MDS00718PR and PGDIT09 REM005118PR), cofinanced with FEDER funds.

References

Fig. 3. TOTBEM Postprocessing module: 3D visualization of the potential distribution on the earth surface.
Body-fitting meshes for the Discontinuous Galerkin Method

J. Cui¹, S. M. Schnepp¹, and T. Weiland¹,²

¹ Graduate School of Computational Engineering, Technische Universitaet Darmstadt, Dolivostrasse 15, 64293 Darmstadt, Germany, cui@gsc.tu-darmstadt.de, schnepp@gsc.tu-darmstadt.de
² Institut fuer Theorie Elektrömagnetischer Felder, Technische Universitaet Darmstadt, Schlossgartenstrasse 8, 64289 Darmstadt, Germany, thomas.weiland@temf.tu-darmstadt.de

Summary. A mesh scheme is developed to deal with curved boundaries of the geometry using quadrilateral elements for the Discontinuous Galerkin Method (DGM). To achieve this, we first generate the inner part of the mesh in a structured manner and connect it to the curved boundary with a so-called buffer layer. Elements in the buffer layer employ a high order mapping to fit the boundary. We demonstrate high order convergence rates with an electromagnetic problem in a cylindrical cavity. Furthermore, we show that the frequency spectrum, which is extracted from the time-domain signal is clean, i.e., no spurious modes are observed in any of the examples considered.

1 Introduction

The DGM is a high order numerical method. In order to maintain its high order accuracy in the presence of curved objects, boundaries (surfaces) of the geometries have to be described with high order accuracy as well. The study in [1] shows that meaningful high order accurate results can be obtained only if the curved boundaries are considered with high order geometric approximations. In [2] problems in a cylindrical cavity are solved by pushing the straight edges of elements onto the exact circular boundary. Both implementations [1, 2] employ triangular meshes for the DGM and achieve high order convergence. We propose an alternative mesh scheme based on Cartesian grids. It generates quadrilateral meshes in a simple process for both, exact geometries and objects represented by Non-Uniform Rational B-Splines (NURBS). The scheme enjoys many advantages due to the ability of applying tensor product bases within quadrilateral elements (see e.g. [3, 4]).

2 Body-fitting mesh scheme

We generate a set of buffer elements in the gap between the exact curved boundary and the interior structured mesh as demonstrated in Fig. 1. Figure 2 (left) shows that if no buffer layer is applied, degenerated elements (marked with arrows) are likely to occur, which is guaranteed not to happen with the insertion of a buffer layer [5] (right). Figure 3 gives an example, where a mesh is generated fitting a geometry described by NURBS. For performing the local element deformation in the buffer layer we apply Transfinite Interpolation (TFI) [6].

3 Solving electromagnetic problems

We consider transverse magnetic (TM) problems in a two-dimensional circular domain \(\Omega \) with the boundary \(\partial \Omega \). The Maxwell’s equations read as follows:
where \(H_x \) and \(H_y \) are the x- and y-components of the magnetic field vector, and \(E_z \) the z-component of the electric field vector. The parameters \(\varepsilon \) and \(\mu \) are the electric permittivity and the magnetic permeability, respectively.

In this DGM approach, Legendre polynomials are applied as basis functions and the explicit leap-frog scheme is used for the time discretization [4]. The TM31 mode in a cylindrical cavity is chosen for a convergence study. The errors are measured in the L^2 norm at the end of one periodic oscillation.

Figure 4 shows that the optimal convergence of \((p+1)\) is achieved where \(p \) is the polynomial order. We also extracted eigenfrequencies via a Fourier Transform. The results in Fig. 5 were obtained using central fluxes and 32 elements of 6th order. The eigenfrequencies obtained from the time-domain solution agree with the analytical ones for frequencies up to 0.8 GHz. Above this frequency the spatial resolution is insufficient leading to errors.

4 Conclusions

A body-fitting mesh scheme employing high order curved elements with the DG method is proposed. High order convergence rates in the presence of curved objects are observed. Furthermore, we extracted frequency spectra from simulations of a cylindrical cavity and found the agreement between the numerical results and the respective analytical solutions, i.e., clean spectra are obtained.

Acknowledgement. The work of J. Cui and S. M. Schnegg is supported by the 'Initiative for Excellence' of the German Federal and State Governments and the Graduate School of Computational Engineering at Technische Universitaet Darmstadt.

References

Transmission line parameters computed by NURBS-based impedance boundary conditions: the case of different conductivities

Rafael Vázquez1, Annalisa Buffa1, and Luca Di Rienzo2

1 Istituto di Matematica Applicata e Tecnologie Informatiche - CNR, via Ferrata 1 - 27100, Pavia, Italy
2 Dipartimento di Elettrotecnica, Politecnico di Milano, Piazza L. da Vinci, 32 - 20133, Milano, Italy

1 vazquez@imati.cnr.it, annalisa@imati.cnr.it
2 luca.dirienzo@polimi.it

Summary. High order surface impedance boundary conditions (SIBCs) have been coupled with the Boundary Element Method (BEM) to produce an integral formulation for the computation of the impedance matrix of multiconductor transmission lines of arbitrary cross-section [1, 2]. The method extends the use of SIBCs into lower frequencies and does so efficiently in that the solution of the integral equations need only be computed once whereas the solution may be obtained over the whole applicable frequency domain. In the case of different conductivities of the parallel conductors, care must be taken in the perturbation expansion when the formulation is derived. The use of NURBS gives a better representation of complex geometries and helps in the computation of the radius of curvature and of the tangential derivatives of the unknowns. As a realistic application, the per-unit-length parameters of sector shaped cables are computed, showing the accuracy of the method.

1 Non-uniform rational B-splines

Recently, the so-called Isogeometric Analysis method was introduced in the context of mechanical engineering [3], with the aim of improving the communication between Computer Aided Design (CAD) software and numerical solvers. The method can be understood as a generalization of finite elements, where the standard polynomial shape functions are replaced by the functions used by CAD to describe the geometry.

The most widespread functions in CAD are probably non-uniform rational B-splines (NURBS), due to their flexibility and their capability to design smooth geometries. To define a NURBS curve first it is necessary to introduce a partition of a reference interval. NURBS basis functions are defined on this partition as a set of piecewise rational polynomials. The curve is then created as a linear combination of these basis functions, by associating a control point to each one of them [4].

The method we propose is based on NURBS to represent the contour of the cross section of the conductors, whereas the discrete solution is sought as a non-rational spline. The use of NURBS not only gives a good representation of complex geometries, but it also allows an exact computation of the radius of curvature, as required by high order SIBCs. Moreover, a discretization based on high order B-splines is necessary to compute the tangential derivatives appearing in high order SIBCs, which can not be accurately computed with low order BEM.

2 Integral formulation of the problem

We work on a two-dimensional geometry. Assume that we have N different conductors, where electric currents of intensity I_j, $j = 1, \ldots, N$ flow. We denote by Γ_j the boundary of their cross sections. We choose an eddy-current model written in terms of the magnetic vector potential A. In the 2D case this vector is parallel to the conductors axis, for which $A = Ae_z$.

Splitting the potential into “source” and “eddy” components, $A = A^s + A^e$, our continuous problem becomes

\begin{equation}
\Delta A^e = i\omega \mu \sigma A^e, \quad \int_{\Gamma_j} \frac{1}{\mu} \frac{\partial A^e}{\partial n} = I_j,
\end{equation}

\begin{equation}
[A^e]|_{\Gamma_j} = -A^s, \quad \left. \left[\frac{\partial A^e}{\partial n} \right] \right|_{\Gamma_j} = 0, A^e = O\left(\frac{1}{\pi r} \right), |r| \to +\infty,
\end{equation}

where A^i is an unknown, and is constant for each conductor.

Denoting by $G(r, r')$ the fundamental solution of the 2D Laplace equation, we define the integral operators associated to the single and double layer potentials

\begin{equation}
S_j u(r) = \oint_{\Gamma_j} G(r, r') u(r') \, dr' = \int_{\Gamma_j} G(r, r') u(r') \, d\gamma(r'),
\end{equation}

\begin{equation}
D_j u(r) = \int_{\Gamma_j} \frac{\partial G(r, r')}{\partial n} u(r') \, d\gamma(r'),
\end{equation}

and denoting by $K = \frac{\partial A^e}{\partial n}$, the solution of our problem satisfies the integral equation

\begin{equation}
A^e(r) + \sum_{j=1}^{N} S_j K(r) = \left(-\frac{I}{2} + \sum_{j=1}^{N} D_j \right) A^e_{\text{int}}(r).
\end{equation}

3 Approximation by SIBCs

SIBCs can be applied whenever the skin depth

\begin{equation}
\Delta A^e = i\omega \mu \sigma A^e, \quad \int_{\Gamma_j} \frac{1}{\mu} \frac{\partial A^e}{\partial n} = I_j,
\end{equation}

\begin{equation}
[A^e]|_{\Gamma_j} = -A^s, \quad \left. \left[\frac{\partial A^e}{\partial n} \right] \right|_{\Gamma_j} = 0, A^e = O\left(\frac{1}{\pi r} \right), |r| \to +\infty,
\end{equation}

where A^i is an unknown, and is constant for each conductor.

Denoting by $G(r, r')$ the fundamental solution of the 2D Laplace equation, we define the integral operators associated to the single and double layer potentials

\begin{equation}
S_j u(r) = \oint_{\Gamma_j} G(r, r') u(r') \, dr' = \int_{\Gamma_j} G(r, r') u(r') \, d\gamma(r'),
\end{equation}

\begin{equation}
D_j u(r) = \int_{\Gamma_j} \frac{\partial G(r, r')}{\partial n} u(r') \, d\gamma(r'),
\end{equation}

and denoting by $K = \frac{\partial A^e}{\partial n}$, the solution of our problem satisfies the integral equation

\begin{equation}
A^e(r) + \sum_{j=1}^{N} S_j K(r) = \left(-\frac{I}{2} + \sum_{j=1}^{N} D_j \right) A^e_{\text{int}}(r).
\end{equation}

3 Approximation by SIBCs

SIBCs can be applied whenever the skin depth
\[\delta = \sqrt{\frac{2}{\omega \mu \sigma}}. \]

is “small enough”. Following [1,5], the fields are written as asymptotic expansions in terms of \(\delta \), in the form:

\[A^e_{\text{int}}(r, \delta) \approx \sum_{i=0}^{3} A^{e,i}_{\text{int}}(r) \delta^i, \]

\[A^i(r, \delta) \approx \sum_{i=0}^{3} A^{i,i}(r) \delta^i, \]

and denoting the curvature of \(\Gamma \) by \(\mathcal{C} \), and by \(\frac{\partial^2}{\partial r^2} \) the second tangential partial derivative, it holds:

\[A^{e,i} = \sum_{l=1}^{4} \psi_l(K^{e,i-1}), \text{ with } \psi_1[u] = u, \]

\[\psi_2[u] = \frac{\mathcal{C} u}{2}, \quad \psi_3[u] = \frac{3\mathcal{C}^2 u}{8} - \frac{1}{2} \delta^2 u. \]

We then solve sequentially the problem, for \(i = 0, \ldots, 3 \)

\[A^{f,i}(r) + \sum_{j=1}^{N} S_{ij} K^i(r) = \]

\[\left(\frac{-I}{2} + \sum_{j=1}^{N} D_{ij} \right) \left(\sum_{l=1}^{N} \psi_l(K^{-1,i}(r)) \right), \]

\[\int_{\Gamma_i} \frac{1}{\mu} K^0 = I_i, \]

and \(\int_{\Gamma_i} \frac{1}{\mu} K^l = 0, \text{ for } l = 1, 2, 3. \)

4 The case of different conductivities

Let us assume that the electrical conductivity of each conductor is \(\sigma_{ij}, j = 1, \ldots, N \), and define the small parameter for each conductor, \(\delta_j \), as in [5]. It is also necessary to define a small parameter for the exterior domain, that we can take, for instance, \(\delta_0 = \delta_N \). With this choice of small parameters, we rewrite the asymptotic expansions (7) based on \(\delta_0 \), whereas the expansion (6) is written with a different \(\delta_j \) in each conductor. Since the small parameters are different for the conductors and the insulator, when considering the continuity conditions on the interface, it is not possible just to equate the terms with the same coefficients, but we must adjust the equations multiplying and dividing some terms by powers of \(\delta_0 \).

5 Three sector-shaped cable

We have applied the method to the simulation of a three sector-shaped cable with a shield, as the one shown in Fig. 1. Each sector is made of copper, with electrical conductivity \(\sigma = 5.8 \times 10^7 \text{ S/m} \), and for the shield the electrical conductivity is \(\sigma = 1.1 \times 10^6 \text{ S/m} \). We notice that the corners of each sector have been rounded, because the SIBCs can only be applied in smooth geometries.

![Fig. 1. Geometry of the three sector-shaped cable](image)

The contour of each sector is parametrized with a quadratic NURBS with 9 elements, and the shield with a quadratic NURBS formed by 4 elements. Then, the problem is solved in a refined mesh formed by 45 elements on each conductor, and 20 elements on the shield. Our results are compared in Fig. 2 with the ones given by a commercial FEM software, in a mesh formed by 187607 elements.

![Fig. 2. Pu.i. self-resistance and self-inductance for one sector of the three sector cable](image)

References

Dynamical analysis and control of chaos in Vilnius chaotic oscillator circuit

Selçuk Emiroğlu1, Yılmaz Uyaroglu1

1Sakarya University, Eng. Faculty, Electrical Electronics Engineering Department, 54187, Esentepe Campus, Sakarya, Turkey, selcukemiroglu@sakarya.edu.tr, uyaroglu@sakarya.edu.tr

Summary. In this paper, Vilnius chaotic oscillator circuit is realized. Electronic circuit implementation of the Vilnius chaotic oscillator was realized using Multisim®. Also, the state equations of Vilnius chaotic oscillator are obtained by circuit theory. Dynamical analysis of Vilnius chaotic circuit is investigated by using dynamic state equations. The mathematical model of oscillator is constructed using MATLAB®. In addition, control of chaos in Vilnius chaotic oscillator is determined by using time delay feedback theory. Time delay feedback controllers are designed to eliminate chaos from system trajectories and stabilize the system at its equilibrium point. Numerical simulations results confirming the analytical analysis are shown and MATLAB® simulations are also performed to confirm the efficiency of the proposed control scheme.

1 Introduction

Chaos has not a general definition in literature but there are some properties of chaotic systems. The chaotic systems are very sensitivity to initial conditions. In order that any nonlinear system is able to behave chaotic, the system must be at least three dimensional for an autonomous system or two dimensional for non-autonomous system in the continuous system [1]. In chaos, Lyapunov exponents must be determined to identify whether the system behaves chaotic or not [2]. In the 3D system, one of the lyapunov exponents of the system must be positive, the second one negative and third one zero, respectively. So, in a third order dynamical system, the sign of the Lyapunov exponent could be positive, negative and zero for chaotic behavior [3]. In oscillator circuit, in order to can show chaotic behavior, autonomous circuit designed by resistor, capacitor and inductor elements must contain:

- one or more nonlinear elements
- one or more locally active resistors
- three or more energy storage elements [4].

Many chaotic oscillator circuits are developed. Vilnius oscillator which has a simple circuit scheme is developed for educational purpose by A. Tamasevicius in 2005 [5].

2 Vilnius chaotic oscillator and its dynamical analysis

In this section, Vilnius chaotic oscillator circuit is shown in Fig. 1.

Fig. 1 Vilnius chaotic oscillator circuit

This circuit is constructed in Multisim program. By changing the R3 resistor, dynamic analysis of circuit is analyzed using Multisim and simulation results are given in Fig. 2.

Fig. 2 Phase portraits of Vilnius circuit R=100, 220, 350, 400, 495, 600 ohm

Using KCL and KVL circuit theory, state equations of Vilnius chaotic oscillator circuit are obtained as shown in Eq. 1.

$$C_1 \frac{dV_{C_1}(t)}{dt} = I_L$$

$$L_1 \frac{dI_L(t)}{dt} = (k-1)R_2I_L - V_{C_2} - V_{C_1}$$

$$C_2 \frac{dV_{C_2}(t)}{dt} = I_{R_4} + I_{L_1} - I_D$$

(1)

By using some transformations, dimensionless state equations may be obtained in Eq. 2.
Fig. 3 Matlab-Simulink model of circuit via state equations

\[
\begin{align*}
\dot{x} &= y \\
\dot{y} &= \left(\frac{k-1}{\rho}\right)R_2 y - x - z \\
z &= \frac{1}{\varepsilon} \left(b + y - c(e^z - 1)\right)
\end{align*}
\]

(2)

where, \(\rho = \frac{I_1}{C_1}, \varepsilon = \frac{C_2}{C_1}, k = 1 + \frac{R_1}{R_2}, b = \frac{\rho R_4}{V_T}\).

Using Simulink model, phase portraits of circuit are obtained as shown in Fig. 4.

Fig. 4 Phase portraits of circuit \(R=100, 220, 350, 600\) ohm using Matlab

Also, electronic circuit implementation of vilnius chaotic oscillator is realized and phase portrait of circuit are obtained by oscilloscope.

Fig. 5 Electronic circuit experiment

3 Time delay feedback control of chaos in Vilnius chaotic oscillator

In this section, control of chaos in Vilnius oscillator is realized by using time delay feedback control theory. The controller [6] is designed based on time delay feedback control scheme in Eq 3.

\[
u = K(x(t) - x(t - \tau))
\]

(3)

Time delay feedback controller is applied to the Vilnius system as shown in Eq. 4

\[
\begin{align*}
\dot{x} &= y + K(x(t) - x(t - \tau)) \\
\dot{y} &= \left(\frac{k-1}{\rho}\right)R_2 y - x - z \\
z &= \frac{1}{\varepsilon} \left(b + y - c(e^z - 1)\right)
\end{align*}
\]

(4)

Finally, phase portraits of controlled Vilnius circuit will be obtained.

References

Summary. The creation of equivalent models of waveguide structures is a challenging task. This contribution revisits a method to establish systems of ordinary differential equations to model the transient dependency between port voltages and currents of the structure based on real eigenmodes. These equations can be derived either in an impedance or admittance formulation. The method is illustrated by the transfer properties of a rectangular waveguide. It is shown that the frequency domain impedance parameters of this waveguide, obtained by an eigenmode expansion, converge to the parameters which are commonly known from literature.

1 Introduction

The computation of transfer functions of lossless radio frequency (RF) multiport structures is a common issue related to scientific computing in electrical engineering. A large variety of methods is discussed in the literature to determine these transfer functions in frequency domain. However, frequency domain approaches fail, if field filling and defilling processes in RF structures [1, 3, 5, 6] or the response of these structures due to transient port stimuli are of interest. In this contribution a modal expansion is employed to transfer the electrodynamic wave equation with excitation to a coupled first order ordinary differential equation (ODE). This differential equation approximates the dependency of port quantities like voltages and currents in an explicit time domain formula. Thus, the electric and magnetic field strengths, \(\mathbf{E}(r,t)\) and \(\mathbf{H}(r,t)\), are taken as a starting point. There, \(\mathbf{E}(r,t)\) denotes the electric field strength, \(\mathbf{H}(r,t)\) the magnetic field strength, \(\varepsilon\) a constant permittivity, \(\mu\) a constant permeability, \(\mathbf{J}_m(r,t)\) the magnetic and \(\mathbf{J}_e(r,t)\) the electric current density.

2 Mathematical Modeling

For the derivation of waveguide structure’s equivalent models Faraday’s law of induction

\[
\nabla \times \mathbf{E}(r,t) = -\mu \frac{\partial}{\partial t} \mathbf{H}(r,t) - \mathbf{J}_m(r,t) \quad (1)
\]

and Ampere’s law

\[
\nabla \times \mathbf{H}(r,t) = \varepsilon \frac{\partial}{\partial t} \mathbf{E}(r,t) + \mathbf{J}_e(r,t) \quad (2)
\]

are taken as a starting point. Taking the curl of the resulting equation, using the electric fields to be free of any sources and replacing the curl of the magnetic fields by the r.h.s. of (2) leads to the wave equation with electric current excitation:

\[
\Delta \mathbf{E}(r,t) - \varepsilon \mu \frac{\partial^2}{\partial t^2} \mathbf{E}(r,t) = \mu \frac{\partial}{\partial t} \mathbf{J}_e(r,t). \quad (3)
\]

The electric fields are expanded in terms of real eigenmodes \(\tilde{\mathbf{E}}_v(r)\) and a transient weighting factor \(x_v(t)\):

\[
\mathbf{E}(r,t) = \sum_{v=1}^{\infty} \tilde{\mathbf{E}}_v(r) x_v(t). \quad (4)
\]

Note that the eigenmodes \(\tilde{\mathbf{E}}_v(r)\) satisfy

\[
\Delta \tilde{\mathbf{E}}_v(r) + \varepsilon \mu \frac{\partial^2}{\partial t^2} \tilde{\mathbf{E}}_v(r) = 0 \text{ on } \Omega, \quad (5)
\]

\[
n \times \tilde{\mathbf{E}}_v(r) = 0 \text{ on } \partial \Omega_{\text{wall}}, \quad (6)
\]

\[
n \cdot \tilde{\mathbf{E}}_v(r) = 0 \text{ on } \partial \Omega_{\text{port}}, \quad (7)
\]

with the resonant angular frequency \(\omega_v\) of the \(v\)-th mode. Condition (6) corresponds to perfect electric material on the boundary of the waveguide, whereas
corresponds to perfect magnetic conducting material on the cross section of the waveguide ports. Replacing the transient electric fields in (3) by (4), exploiting the orthogonality of the eigenmodes

\[\iint_{\Omega} \mathbf{E}_v(\mathbf{r}) \cdot \mathbf{E}_m(\mathbf{r}) \, d\mathbf{r} = \begin{cases} 2W_v/\varepsilon, & \text{if } v = n, \\ 0, & \text{if } v \neq n. \end{cases} \] (8)

and utilizing the fact that the excitation current density can be expressed as a superposition of impressed excitation current densities \(\mathbf{J}_{\text{port},m}(\mathbf{r}) i_m(t) \) on the cross sections of all \(M \) waveguide ports

\[\mathbf{J}_e(\mathbf{r},t) = \sum_{m=1}^{M} \mathbf{J}_{\text{port},m}(\mathbf{r}) i_m(t) \] (9)

leads to the ordinary differential equation

\[2W_v \left(\partial_x^2 x_v(t) + \frac{\partial^2 x_v(t)}{\partial t^2} \right) = \frac{\partial}{\partial t} \sum_{m=1}^{M} f_{v,m} i_m(t). \] (10)

Here \(W_v \) is defined as the energy stored in the \(v \)-th mode, \(i_m(t) \) the modal current of the \(m \)-th port and

\[f_{v,m} = \iint_{\Omega} \mathbf{E}_v(\mathbf{r}) \cdot \mathbf{J}_{\text{port},m}(\mathbf{r}) \, d\mathbf{r}. \] (11)

Equation (10) can be expressed for all \(N \) considered eigenmodes and all \(M \) ports as the state equation

\[\begin{pmatrix} \dot{x}_1(t) \\ \vdots \\ \dot{x}_N(t) \end{pmatrix} = A_\Sigma \begin{pmatrix} x_1(t) \\ \vdots \\ x_N(t) \end{pmatrix} - \frac{1}{2} \begin{pmatrix} f_{s,1} & \cdots & f_{s,M} \\ f_{d,1} & \cdots & f_{d,M} \end{pmatrix} \begin{pmatrix} i_1(t) \\ \vdots \\ i_M(t) \end{pmatrix}. \] (12)

The dependency of the voltages at the ports and the inner states is described via the output equation

\[\begin{pmatrix} v_1(t) \\ v_2(t) \\ \vdots \\ v_M(t) \end{pmatrix} = C_v \begin{pmatrix} \dot{x}_1(t) \\ \vdots \\ \dot{x}_N(t) \end{pmatrix}. \] (13)

Note that the state space system (12) and (13) with the matrices \(\{A_\Sigma, B_v, C_v\} \) is an equivalent ODE model of the multiport waveguide structure in an impedance formulation, since it describes the transient port voltages as a function of transient port currents.

2.2 Admittance Formulation

The derivation of the state space systems in an admittance formulation is similar to the procedure proposed in section 2.1. However, for the admittance formulation magnetic currents are used to excite the structure, the expansion is performed using magnetic fields and perfect electric conducting boundary conditions are chosen on the port cross sections for the eigenmodes.

3 Application Example and Convergence

A homogeneously filled rectangular waveguide with constant cross section carrying a TE_{10} mode is chosen as an example. This structure is well suited for validation and demonstration purposes as the eigenvalue problem (5) - (7) can be solved analytically for this geometry. As a central result of this contribution it is shown, that the frequency domain transfer function of the state space system (12) and (13) converges to the analytically known impedance matrix \(Z(\omega) \) of the waveguide, if an infinite number of eigenmodes is considered in the modal expansion:

\[\lim_{N \to \infty} C_v \left(\frac{i_\omega I - A_\Sigma}{\omega} \right)^{-1} B_v = Z(\omega). \] (14)

Here \(I \in \mathbb{R}^{N \times N} \) denotes the identity matrix.

4 Summary and Conclusions

This work illustrates the derivation of ODE models in an impedance and admittance formulation for lossless RF structures based on real eigenmodes. The method is exemplified by employing a simple waveguide. Furthermore, the convergence of the method is discussed for this test example.

References

Field of values analysis of Laplace preconditioners for the Helmholtz equation.

Antti Hannukainen

Aalto University, Department of Mathematics and Systems Analysis, P.O. Box 11100, FI-00076 Aalto, Finland
antti.hannukainen@aalto.fi

Summary. In this talk, we analyze the convergence of the preconditioned GMRES method for the first order finite element discretizations of the Helmholtz equation in media with losses. We consider a Laplace preconditioner and an inexact Laplace preconditioner. Our analysis is based on bounding the field of values of the preconditioned matrix in the complex plane. The obtained results are illustrated by numerical examples.

1 Introduction

Finite element discretizations of wave propagation problems lead to very large, indefinite, non-hermitian, and complex valued linear systems. One strategy to solve these systems is to use a suitable Krylov subspace solver such as GMRES, CGN, BiCGStab (see [6]) together with a preconditioner.

Finding good preconditioners for wave propagation problems has proven to be very difficult. The number of iterations required to solve the linear system depends strongly on the mesh density h and on the wave-number κ. For Helmholtz equation, the dependency between mesh density and the required number of iterations is due to the Laplace operator part. Several preconditioners are capable of eliminating this dependency, see e.g. [3][4]. The κ-dependency is related to the indefiniteness of the problem. Eliminating it has proven to be considerably more difficult.

Preconditioners for the Helmholtz equation can be divided roughly into shifted-Laplace (see e.g [3][4]) and two-level methods (see e.g. [1][5]). The shifted-Laplace preconditioners are successful in cutting the growth in the condition number due to the Laplace operator part. Several preconditioners are capable of eliminating this dependency, see e.g. [3][4]. The κ-dependency is related to the indefiniteness of the problem. Eliminating it has proven to be considerably more difficult.

In this talk, we consider the problem

\[-\Delta u - (\kappa^2 - i\sigma) u = f \quad \text{in } \Omega,\]
\[u = 0 \quad \text{on } \partial \Omega\]

(1)

where $\kappa, \sigma \in \mathbb{R}$, $\kappa > 0, \sigma > 0$. The domain $\Omega \subset \mathbb{R}^d, d = 2, 3$ and the load function $f \in L^2(\Omega)$. We assume that this problem is discretized using first order finite elements on triangular of tetrahedral quasi-regular mesh. The mesh density parameter is denoted as h.

We present a field of values (FOV) based analysis for the convergence of the preconditioned GMRES method. We consider the Laplace and the inexact Laplace preconditioner, in which the Laplace problem is solved approximately by using an suitable iterative method.

A FOV analysis has been given in [8] for Hermitian positive definite split preconditioners and for shifted-Laplace preconditioner in [7]. The main difference compared to this work is that we estimate the FOV by using methods similar to the ones applied in the analysis of additive Schwarz preconditioners for elliptic problems. The novelty of our approach is that it allows us to analyze the inexact Laplace preconditioners in detail and it can also be applied to analyze two-level preconditioners.

The presented approach also takes the non-normal nature of the linear system automatically into account. This is especially important for inexact Laplace preconditioners, as their non-normality is not solely related to the mass matrix. We can analyze these preconditioners via an perturbation argument.

2 Field of values

The convergence of the GMRES method (see [6]) for the linear system $Ax = b$ is related to the minimization problem

\[|r_i| = \min_{p \in \mathbb{P}_i} |p(A)r_0|,\]

(2)

in which r_i is the residual on step i and \mathbb{P}_i the space of polynomials of order i. Based on this minimization problem, different convergence estimates can be derived, see e.g. [2]. When the matrix A is non-normal, the convergence can be related to the properties of the pseudospectrum or the field of values (FOV).

The FOV is defined as the set

\[F(A) = \left\{ \frac{x^*Ax}{x^*x} \mid x \in \mathbb{C}^n, x \neq 0 \right\}.\]

(3)

The convergence of GMRES is related to the dimensions and the location of the FOV in the complex plane. A simple estimate is given as
The matrix form of the operator u is the stiffness matrix and K is the Laplace preconditioner containing the FOV, but not the origin.

$$|r_t| \leq \left(\frac{s}{\|c\|} \right)^t |r_0|. \quad (4)$$

In which s and c are related to the disk

$$D = \{ z \in \mathbb{C} \mid |z - c| \leq s \}$$

containing the FOV, but not the origin.

3 Laplace preconditioner

The Laplace preconditioner $P : V_h \rightarrow V_h$ is defined as:

For each $u \in V_h$ find $Pu \in V_h$ such that

$$(\nabla Pu, \nabla v) = (u, v) \quad \forall v \in V_h. \quad (5)$$

The matrix form of the operator P is $K^{-1}M$, where K is the stiffness matrix and M the mass matrix. The right preconditioned linear system is

$$AK^{-1}M\tilde{x} = b. \quad (6)$$

The FOV for this system is characterized by two following Theorems.

Theorem 1. There exists a constant $C > 0$, independent of h, σ, and κ, such that

$$\mathcal{F}(AK^{-1}M) \subset [C(1 - \sigma^2)h^d, Ch^d] \times [0, C\sigma h^d],$$

in which d is the spatial dimension.

Theorem 2. There exists a constant $C > 0$, independent of h, σ, and κ, such that $\mathcal{F}(AK^{-1}M) \subset S$,

$$S = \left\{ z \in \mathbb{C} \mid ch^d - \frac{\kappa^2}{\sigma}3z \leq \Re z \leq ch^d - \frac{\kappa^2}{\sigma}3z \right\},$$

in which d is the spatial dimension.

4 Inexact Laplace preconditioned

In practical computations, the solution to the Laplace problem $Kx = b$ would be replaced with some approximation $x \approx K^{-1}b$.

We assume that such an approximation is obtained with a symmetric iterative method convergent in the $\| \cdot \|_{L^2()}$ and $\| \cdot \|_{H^1()}$ norms. This is, there exists constants $\gamma_i, 0 < \gamma_i < 1, i = 1, 2$ and $C > 0$, independent on γ_i and γ_i, such that for any $u \in V_h$ there holds

$$\|E_N u\|_{H^1()} \leq C_{\gamma_i} \|u\|_{H^1()}$$

and

$$\|E_N u\|_{L^2()} \leq C_{\gamma_i} \|u\|_{L^2()}$$

In which, E_N is the error propagation operator relating e_t to e_N, i.e., error on step 0 to error on step N. A suitable approximation can be obtained for example with the multigrid method.

The FOV for the preconditioned system satisfies

$$\mathcal{F}(AK^{-1}M) \subseteq \mathcal{F}(AK^{-1}M) \cap \mathcal{F}(A(K^{-1} - K^{-1})M).$$

Bound for the FOV is obtained by combining an estimate for the size of the perturbation set

$$\mathcal{F}(A(K^{-1} - K^{-1})M). \quad (7)$$

with an estimate for the FOV for the Laplace preconditioned system.

Theorem 1. There exists a constant $C > 0$, independent of γ_i, γ_i, h, and σ, such that

$$\mathcal{R} \mathcal{F}(A(K^{-1} - K^{-1})M) \subset U_R$$

and

$$\mathcal{I} \mathcal{F}(A(K^{-1} - K^{-1})M) \subset U_I$$

in which

$$U_R = \left[-Ch^d(\gamma_i^N + \kappa^2\gamma_i^N), Ch^d(\gamma_i^N + \kappa^2\gamma_i^N) \right]$$

and

$$U_I = \left[-Ch^d(\gamma_i^N + \sigma\gamma_i^N), Ch^d(\gamma_i^N + \sigma\gamma_i^N) \right].$$

where d is the spatial dimension and N the number of iterations used to compute the preconditioned.

From theoretical point of view, the implication of this theorem is that the number of iterations should be increased when the parameter κ grows to keep the size of the perturbation set small and the origin outside the FOV.

Acknowledgement. The author was supported by the grant 133174 from the Academy of Finland

References

Optimization of Planar Structures by Means of Shifted Winding
Claudia Hebedean1, Calin Munteanu1, Adina Racasan1
1Technical University of Cluj-Napoca, Claudia.Hebedean@ethm.utcluj.ro, Calin.Munteanu@ethm.utcluj.ro, Adina.Racasan@ethm.utcluj.ro

Summary. Planar structures are often used recently due to their many advantages. Transformers, power inductors and EMI filters are only a few components that are constructed using this technique. In order to increase their efficiency, parasitic capacitance (EPC) must be decreased and HF losses must be appropriate to their utilization. In previous studies it was discovered that a shifted winding of the planar structures decreases EPC. This paper represents a study which aims at finding an optimum shifting of the windings, which will decrease EPC and increase HF losses.

1 Introduction in planar structures
Planar technology has many advantages such as improving high frequency (HF) characteristics, reducing size, lowering profile, achieving structural and functional integration, lowering manufacturing time and cost [1].

A planar integrated structure is composed of alternating layers of conductors, dielectrics, insulation and ferrite materials [2].

The difference between conventional and planar magnetic components is in terms of orientation of winding layers. Windings in a planar magnetic component have flat, wide and rectangular cross sections, and the core of a planar structure has a lower profile than that of a conventional structure. A comparison between planar and conventional structures is shown in Fig. 1.

Planar structures also have disadvantages like large footprint area, increased parasitic capacitance and low window utilization factor. Depending on the analyzed structure and its mode of operation, different parameters must be optimized.

Fig. 1. Comparison between planar and conventional structure

EMI filters can also be constructed as planar structures. In order to optimize their behavior, equivalent parasitic capacitance (EPC) and equivalent series inductance (ESL) must be reduced and because the role of EMI filters is to attenuate unwanted noise, a higher loss factor at high frequency is needed.

Because the aim of this study is to improve planar structures with the same parameters and role as EMI filters, the EPC needs to be decreased and the HF losses of the planar structure increased.

2 Presentation and validation of the technique used to increase HF losses
In previous studies, the shifting of the winding was demonstrated to be the best method to decrease EPC [4], but it was not considered to be a factor that influences the HF losses. The authors considered this as an alternative to the nickel plating of the copper conductors, which is also a method to increase HF losses, and researched the way that shifted windings affect the loss values.

The original structure from Fig. 2 was the object of this study. In previous researches, the conductors of winding3 were placed so as to decrease EPC. A study of the loss variations depending on the shifted windings was conducted. Winding3 was shifted to eight different positions and the losses were calculated with the help of a 2D numerical modeling program of the electromagnetic field.

The notation SO from Fig. 3 represents the original structure and the other notations are referring to structures with different shifting of winding3, for example bd1.1 represents a
structure with winding3 shifted to the right with 1.1 mm from its original position.

Fig.3. Structure losses depending on winding3 shifting for the original structure

The conclusions of this study are that the shifted winding affects the high frequency losses. From further investigations, the results show that for the structures with pure copper conductors, the optimum or maximum value of the losses is present for the structure with winding3 shifted with 1.1 mm as shown in Fig. 4.

Fig. 4. Variation of losses with the shifting of winding3 for the original structure

3 Study of the optimal positioning of the conductors

In this chapter, the optimum structure from the HF losses point of view is presented. As for the EMI filters, the value for the losses must be increased at HF. The results were obtained using an software program previously tested. The problem of determining the optimal location of the conductors is considered to be a magnetostatic problem, so for the numerical analysis module of the field the boundary element method (BEM) was chosen. BEM is a semi-analytical method, which leads to accurate results using a small number of mesh elements and is fast in terms of computing time.

Because the number of “mobile” elements is relatively small, the algorithm of optimal design is based on conjugate gradient method (CG) with an optimum step in the search direction.

The paper presents the optimum structure starting from simple structures with one or two mobile conductors, reaching more complex ones. The results are compared with the optimal results for the EPC reduction.

Finally, is attempted to be obtained an optimum result considering the losses and also the parasitic capacitance.

Acknowledgement This paper was supported by the project "Doctoral studies in engineering sciences for developing the knowledge based society-SIDOC™ contract no. POSDRU/88/1.5/S/60078, project co-funded from European Social Fund through Sectorial Operational Program Human Resources 2007-2013

References
Validation of the Potential Method; comparing measurements of a dihedral with calculations

Magnus Herberthson1,2

1 Sensor and EW Systems, FOI, Swedish Defence Research Agency, magnus.herberthson@foi.se, 2 Department of Mathematics, Linköping University, magnus.herberthson@liu.se

Summary. Earlier reported is the potential method, which addresses the EFIE (Electric Field Integral Equation) or MFIE/CFIE by applying the Hodge decomposition theorem to a one-form related to the physical current J. In this approach, one solves for two unknown scalar potentials, Φ and Ψ, which carries the same information as J. Here we compare calculations on a 100$^\circ$ dihedral with measurements. The calculations are made on meshes with different triangle sizes, which give a simple convergence study. The computational burden is also compared with other methods.

1 Introduction

We look at the electromagnetic scattering problem in frequency domain. More precisely, we first address the Electric Field Integral Equation, EFIE, [1]. In the standard formulation using the method of moments (MoM), objects which are large compared to the wavelength will produce linear systems which easily becomes to large to solve with direct solvers. This problem can be tackled in various ways, and one option is to use the potential method, [2].

This method has been reported earlier, [3], [4], demonstrating proof of concept under various circumstances. In this work, we will make more quantitative evaluations, comparing measurements on a 100$^\circ$ dihedral (see Fig. 1) with calculations using the potential method. We will make a simple convergence study, i.e., compare calculations using different meshes, and also compare the number of unknowns with other approaches.

2 Formulation

In standard notation, with a plane wave illuminating a PEC surface S and in an adapted ON-basis, the EFIE (electric field integral equation) reads

\begin{equation}
\forall r \in S : -E_0 e^{-ikz} \hat{x} \triangleq ikc\mu_0 (1 + \frac{1}{k^2} \nabla \nabla \cdot) \int_S g(r, r') J(r') dS'.
\end{equation}

Here J is the unknown current, g is the standard Green’s function and \triangleq means tangential equality. By the replacement

\begin{equation}
h(r, r') = g(r, r') e^{ik|z-z'|}, \quad K(r') = e^{ikz} J(r')
\end{equation}

and by the application of Hodge decomposition to K (under the assumption that S is homeomorphic to a sphere), so that, in vector calculus notation,

\[K = \nabla_\gamma \Phi + \hat{n} \times \nabla_\gamma \Psi, \]

we can express the EFIE in terms of the complex scalar functions Φ and Ψ, which serve as potentials for K, \hat{n} is normal to S. ∇_γ is the intrinsic (to S) gradient operator.

The resulting equation is obtained by multiplying $[1]$ with e^{ikz}, and then use $[2]$ to express everything in terms of Φ and Ψ. The resulting equation is not given here, see for instance [3]. Rather, we focus on possible advantages and results. Two major advantages are the facts that 1) After multiplication with e^{ikz}, the left hand side of $[1]$ becomes an exact one-form (and this is true whether on regards $-E_0 \hat{x}$ as a one-form in \mathbb{R}^3 or as a one-form on S), and 2) The replacement $K(r') = e^{ikz} J(r')$ allows for potentially sparser sampling, and hence reduced numerics. (C.f. [5].)

3 Numerical results

We have performed calculations on a 100$^\circ$ dihedral with dimensions as in Fig. 1. The calculations have been performed with different meshes, resulting in a simple convergence study. The calculations are also compared with measurements and finally the number of unknown are compared to the number of unknown suggested by a commercial software. In Fig. 2 calculations with dimensions as in Fig. 1. The opening angle of the dihedral is 100$^\circ$, and the dihedral is illuminated with a plane wave with $f=10$ GHz from above at different angles. The convention for horizontal and vertical polarization is indicated in the figure.
Measurements vs. calculations for different mesh sizes, horizontal polarization (see Fig. 2). Numbers in the legend indicate typical side length in the mesh.

As compared with measurement for horizontal polarization (see Fig. 2). A reasonable agreement with measurements and calculations are obtained with a mesh size with a typical side length of 10 mm. Compared with the wavelength λ, this is only \simthree triangles/wavelength which is well below the rule of thumb which is typically eight or ten triangles/wavelength. With our mesh, we have 3406 triangles and a total number of unknown which is 3410. Using the commercial software FEKO, (in standard MoM setting), it is for the given geometry and frequency suggested a mesh which gives 127000 unknowns. Although we do not claim our results to be as accurate as with FEKO, the reduction of unknowns is substantial. On the other hand, using the same meshes for calculations of the scattering from vertical polarization, the results are less satisfactory, see Fig. 3. By refining the mesh, clear improvements are noticed for the mesh with a side length of \sim5 mm, especially around incidence angle around 0°, although the agreement is worse around incidence angles around 25°. It might be claimed that this mesh size is close to the rule of thumb, but the mesh is only refined at the illuminated part, with parts in the shadow having a coarser mesh. As a result, the number of unknown N is 16872, which is still a good factor less than 127000. As the cost for solving the resulting linear equation scales as N^3, there is a noticeable difference.

Fig. 3. Measurements vs. calculations for different mesh sizes, vertical polarization (see Fig. 2). Numbers in the legend indicate typical side length in the mesh.

4 Conclusions

We have applied the potential method for calculations on a dihedral with opening angle of 100°. It is indicated that the non-convexity of the dihedral requires different mesh sizes in different polarizations. However, in both cases, reasonable results are produced when the number of unknowns are well below the number of unknown given by meshes following the rule of thumb, saying that the side lengths should be $\sim \lambda/10$. This decreases the memory requirements as well as the time for solving the produced linear system, as compared to standard MoM.

References

2. M. Herbertson The potential method for calculations of scattering from metallic bodies Submitted for publication.
4. M. Herbertson Application of the potential method to the magnetic field integral equation Applied Computational Electromagnetics Society, Tammernors, Finland, 2010, pp. 120-123.
Broad Band Surface Impedance Boundary Conditions for Higher Order Time Domain Discontinuous Galerkin Method

Irene Hiltunen1,2, Erion Gjonaj2, and Thomas Weiland2

1Graduate School of Computational Engineering, Technische Universität Darmstadt, Dolivostr. 8, D-64293 Darmstadt
2Institut für Theorie Elektromagnetische Felder, Technische Universität Darmstadt, Schloßgartenstr. 8, D-64289 Darmstadt
\texttt{hiltunen@temf.tu-darmstadt.de, gjonaj@temf.tu-darmstadt.de, weiland@temf.tu-darmstadt.de}

Summary. An implementation of the broad band Surface Impedance Boundary Condition (SIBC) for the high order Discontinuous Galerkin (DG) method in the time domain is presented. In order to treat the frequency dependent impedance function a set of auxiliary differential equations is introduced. The effect of the DG approximation order on the accuracy will be studied, and the results will be compared with the conventional time domain Finite Element Method.

1 Introduction

Time domain modeling is very attractive for wide band electromagnetic problems, since it allows to compute for a large range of frequencies in a single simulation. However, when the frequency band of interest is wide, the dispersive nature of material parameters, i.e. their variation with respect to frequency, needs to be considered. In order to model dispersive electromagnetic materials in time domain simulations, one generally needs to evaluate one or more convolution integrals. Clearly a direct computation of convolution terms is too expensive for every practical computation. For this purpose, several numerically efficient approaches have been proposed. One approach is a recursive convolution \cite{7}. Another technique which is particularly suited for explicit time domain simulations is the Auxiliary Differential Equation (ADE) method. In the following, ADE is applied in the context of SIBC for arbitrary frequency dependent electric conductivities. Finite Difference Time Domain method (FDTD) \cite{11} is widely used for time domain simulations. It leads to explicit time stepping and it is straightforward to implement. However, FDTD has a two important disadvantages: First, the method loses substantial accuracy at curved geometrical boundaries. Second, FDTD is at most 2nd order accurate, thus, it suffers under large numerical dispersion errors at high frequencies. Finite Element Method (FEM) \cite{12} is very accurate as far as the modeling of arbitrary geometries is concerned. However, the time domain FEM leads to implicit time stepping \cite{5}, and is therefore numerically extremely expensive. The Time Domain Discontinuous Galerkin Method (DG) \cite{3} combines the advantages of the aforementioned methods: it is free of numerical dispersion, modeling of arbitrary geometries is straightforward, and due to the global discontinuity of the basis functions, the resulting time stepping scheme is explicit. However, due to the discontinuity of basis functions at cell interfaces, unphysical spurious modes will occur. A possible cure to the problem of spurious modes is the application of various penalization methods as proposed, e.g., in \cite{3}, \cite{1}.

In this study, we will describe the implementation of a wide band SIBC for higher order DG by means of the ADE method. Furthermore, the effect of discretization order, rational approximation order for the impedance function as well as the impact of penalization on the accuracy of DG simulations with SIBC will be investigated.

2 DG Method

In this study, we will consider the Maxwellian initial value problem. The three-dimensional computational domain Ω is discretized into N non-overlapping elements, and on the boundary $\partial \Omega$, the SIBC is applied. Within an element, the electric field E and the magnetic flux density B are approximated by a linear combination of vectorial basis functions ϕ_E and ϕ_B, respectively. As both of the basis functions, ϕ_E and ϕ_B, are defined cell-wise without global continuity, in the DG method, a numerical flux approach is applied in order to impose the neccessary continuity at the interfaces between mesh cells in the weak sense. A detailed description of the method as well as of the approximation functions, ϕ_E and ϕ_B, used in the present implementation is given in \cite{1}.

3 The SIBC Approach

Modeling of media with large but finite electrical conductivities typically leads to very dense meshes and thus to small time steps as required for stability in explicit time domain simulations. Therefore, it is desirable to exclude the lossy media from the computational domain. This can be done by introducing at the boundary surface of the conductive do-
main impedance-like conditions, which provide a relationship between the tangential electric field to the tangential magnetic field components. The classical SIBC was introduced by Leontovich (cf. [10]). It assumes the lossy surface to be planar and ignores the tangential variation of the field quantities. The error of the Leontovich SIBC is order of $O(\delta^2)$, where δ is skin depth, which makes it especially suitable for high frequencies. [3]. The second order SIBC [6] takes into account also the curvature of the surface. It is, furthermore, possible to construct higher order, thus, more accurate SIBC by taking into account, in addition, the tangential variation of the field components along the lossy surface [6]. When the thickness of the conductive medium is of the order of skin depth, the electromagnetic fields on the different sides of lossy medium interact with each other. Also this type of problems can be modeled by means of SIBC, using e.g. Sarto’s [9] approach.

4 Approximation of Impedance Function

In order to transform the dispersive impedance function into the time domain, it is first approximated in the frequency domain as a series of rational functions [2]. The rational approximation for the tangential electric field can be written as:

$$ Y(\omega)E_t \approx Y_0 E_t + \sum_{i=1}^{P} \frac{Y_i E_t}{\jmath \omega - \omega_i}, \quad (1) $$

where E_t is tangential electric field on the surface, P is the order of the rational approximation, Y_0 free space admittance, Y_i and ω_i are approximation parameters. Let us rewrite the rational approximation given in (1) as

$$ Y(\omega)E_t \approx Y_0 + \sum_{i=1}^{P} Y_i. $$

The SIBC condition transforms in the time domain to

$$ Y_0 = Y_0 E_t \quad \text{and} \quad \frac{d}{dt} Y_i - \omega_i Y_i = Y_i E_t. \quad (2) $$

Equation (2) represent the auxiliary differential equations of the ADE method which need to be solved for in the time domain together with the full set of Maxwell’s equations.

5 System of Equations

The system of discrete equations to be solved in the time domain can be written as:

$$ \begin{align*}
C_E e + \frac{d}{dt} M_{\mu} h &= 0 \\
C_H h - \frac{d}{dt} M_{e} e &= C_Y \sum_{i=0}^{P} Y_i \\
Y_0 &= Y_0 e \\
\frac{d}{dt} Y_i - \omega_i Y_i &= Y_i e \quad \text{for } i = 1 \ldots P,
\end{align*} \quad (3) $$

where C_E and C_H are curl-matrices obtained by high order DG discretization, C_Y is so called “admittance flux” matrix, and M_{μ} and M_{e} are block-diagonal mass matrices. In the full paper, the numerical accuracy and efficiency of this approach with respect to discretization order for different rational function approximations [1] will be discussed.

6 Summary

Dispersive SIBC will be implemented for time domain DG method in order to model a wide frequency band at a single simulation. The frequency dependent conductivity of lossy surfaces is considered in time domain by auxiliary differential equations. We will study the accuracy of the solution for different DG discretization orders and impedance function approximations, and compare our results with the standard SIBC-FDTD method.

Acknowledgement. This work is supported by the Graduate School of Computational Engineering at Technische Universität Darmstadt.

References

Computation of Optimal Model Parameters of an Extended Brauer Model for Ferromagnetic Material Behaviour

Timo Hülsmann1, Andreas Bartel1, Sebastian Schöps1, and Herbert De Gersem2

1 Bergische Universität Wuppertal {huelsmann,bartel,schoeps}@math.uni-wuppertal.de,
2 Katholieke Universiteit Leuven Herbert.DeGersem@kuleuven-kulak.be

Summary. Simulation of low-frequency magnetic fields in electric machines demands for implicit time integration. For the nonlinear reluctivity of the ferromagnetic yoke, a smooth material curve is needed to avoid convergence problems in Newton’s method. In this paper the Brauer model is extended to fit the material behavior at low fields more accurately and to guarantee physically correctness for high fields. Furthermore, a procedure to obtain optimal parameters is developed and discussed using a numerical example.

1 Introduction

Typically Finite Element (FE) based simulations of eddy currents use the magnetic vector potential \(A \) and the curl-curl equation

\[
\sigma \frac{dA}{dt} + \nabla \times (\nu \nabla \times A) = J, \tag{1}
\]

with conductivity \(\sigma \), reluctivity \(\nu \) and source current density \(J \). For iron parts the material relation \(H(B) = \nu B \) becomes nonlinear, where \(B = \nabla \times A \) is the magnetic flux density and \(H \) the magnetic field strength. We neglect anisotropy and hysteresis. Hence, we can apply \(H = \nu B \) in terms of \(H := ||H||_2 \) and \(B := ||B||_2 \). Typical models are spline interpolations of measurements, [3], and Brauer’s model, [1].

\[
H_{br}(B) = \nu_{br}(B^2)B = (k_1 e^{k_2 B^2} + k_3)B.
\]

Both allow a simple calculation of the reluctivity \(\nu = \nu(B^2) \) and its derivative \(\frac{d}{dB} \nu \), needed in the computation of material matrices occurring in the space discretization of (1), see e.g. [2]. Brauer’s model is well understood, e.g., a sensitivity analysis shows that currents and fluxes through machines are most sensitive w.r.t. to perturbations in \(k_2 \) followed by \(k_1 \) and \(k_3 \). The model is sufficiently accurate for medium fields but the behavior for low fields (Rayleigh region) and high fields (full saturation, i.e., \(\frac{dH}{dB} = \nu_0 \) as for vacuum) cannot be represented accurately.

2 Extended Brauer model

For high fields the material behaves like vacuum

\[
H_{sat}(B) = \nu_0 (B - B_s) + H_s.
\]

For low fields the dependence of \(B \) on \(H \) is quadratic:

\[
H^{ray}(B) = \frac{1}{4\alpha_1 \nu_{init}^2} + \frac{B}{\alpha_2} - \frac{1}{2\alpha_1 \nu_{init}^2},
\]

with initial reluctivity \(\nu_{init} \) and Rayleigh constant \(\alpha \). In combination we obtain a \(H(B) \)-curve as shown in Fig. [1] with interface points \((B_m, H_m) \) and \((B_s, H_s) \).

Let us determine the coefficients of an extended Brauer model s.t. the global model is continuous differentiable. The classical model does not simply allow to replace low field and high field parts. A shift of the Brauer model enables to fulfill the continuity and differentiability conditions at \(B_m \):

\[
H_{br}(B) = (k_1 e^{k_2 (B - B_{m})^2} - 1) + \nu_{d,m}(B - B_m) + H_m
\]

with \(\nu_{d,m} := \frac{dH_{br}}{dB}(B_m) \) the differential reluctivity at the end of the Rayleigh region. We define the function

\[
H(B) := \begin{cases} H_{ray}(B) & \text{if } 0 \leq B < B_m, \\ H_{br}(B) & \text{if } B_m \leq B < B_s, \\ H_{sat}(B) & \text{if } B_s \leq B. \end{cases}
\]

To fix the model parameters \(k_1 \) and \(k_2 \), we use the continuity conditions \(H_{br}(B_s) = H_s \) and \(\frac{dH_{br}}{dB}(B_s) = \nu_0 \), and solve each equation for \(k_1 \):

\[
k_1 = \frac{H_m - H_{br}}{H_s - H_{br}} - \nu_{d,m} - 1,
\]

\[
k_1 = \frac{H_m - H_{br}}{k_2 (B_s - B_m)^2 + 1} - \nu_{d,m} - 1.
\]

From (3) and (4) we find a nonlinear equation for \(k_2 > 0 \), which is solvable under the conditions

\[
0 < \frac{H_m - H_{br}}{\nu_0 - \nu_{d,m}} < 1
\]

and \(B_s > B_m > 0, H_s > H_m > 0, \nu_0 > \nu_{d,m} \).
The Rayleigh constant can be obtained by \(\alpha := (B_m/H_m - 1/v_{\text{init}})/H_m \). Therefore the model \(\hat{\theta} \) can be fixed from the data \(p := (v_{\text{init}}, B_m, H_m, B_s, H_s) \).

3 Optimal Model Parameters

Let us consider measurement points \((B_j, H_j), j = 1, \ldots, N \), of a ferromagnetic material. We assume monotonicity of the data and a distinctive Rayleigh region.

To find optimal model parameters we solve a nonlinear least squares (NLS) problem, i.e.,

\[
\min_p \sum_{j=1}^{N} \frac{(H(B_j/p) - H_j)^2}{H_j^2},
\]

(5)

Proper initial guesses are important because of the nonliterary. A procedure for this purpose is given by:

i) The fraction of first non-zero measurement points approximates \(v_{\text{init}} \). Then find index \(r \) that minimizes \((H_{r+1} - H_j)/(B_{r+1} - B_j), (B_r, H_j) \). It is an approximation to \((B_m, H_m) \). Compute \(\alpha \) and \(v_{\text{d,m}} \).

ii) Approximate the beginning of the saturation region with the last measurement points. Solve (3) and (4) for \(k_1 \) and \(k_2 \) by replacing \(v_0 \) with the secant slope \(\nu_{N} \) of the last two measurement points.

iii) If \(\nu_{N} \approx v_0 \), use the last point as approximation of \((B_s, H_s) \). Otherwise solve \(\frac{d}{dH} H_{\text{br}}(B_s) = v_0 \) for \(B_s \) and compute \(H_s = H_{\text{br}}(B_s) \).

iv) Solve the NLS problem \(\hat{\nu} \).

4 Example

For validation we created test data from (2) using \(v_{\text{init}} = 400 \text{mH}^{-1}, (B_m, H_m) = (0.5 \text{T}, 70 \text{Am}^{-1}) \) and \((B_s, H_s) = (2 \text{T}, 100 \text{kAm}^{-1}) \). We sample the first two regions with 8 equidistant points. We incorporate Gaussian measurement noise by \(\tilde{H}_i = \text{max}(0, H_i / (1 + \sigma X_i)) \), where \(X_i \sim \mathcal{N}(0, 1) \) and \(\sigma = 0.1 \). Fig. 2 and 3 show the fitted results. The proposed initial guess is sufficient to achieve convergence of the NLS problem. We obtain a curve close to the original curve.

The extended Brauer model is tested in a 2-D FE simulation of a transformer at no-load. Simulation results with the extended Brauer model with parameters from above are used as a reference. For the spline interpolation (cubic and Fritsch-Carlson spline) we smoothened the noisy samples in the Rayleigh region with a moving average filter. Errors of the no-load current \(\tilde{i} \) through the device are depicted in Fig. 4.

The original Brauer model is the computationally least expensive but yields large errors in comparison to the reference solution. It cannot match the shape of the material curve for low and high fields. Spline interpolated measurements yield medium errors but need a high number of Newton steps to converge, cf. [4]. The extended Brauer model is only slightly more expensive than the original Brauer model but is the most accurate also in Fig. 4. It also recovers the reference curve.

References

Eddy current analysis of a PWM controlled induction machine
Hai Van Jorks¹, Erion Gjonaj², Thomas Weiland³

Technische Universität Darmstadt, Institute of Computational Electromagnetics
Schloßgartenstraße 8, 64289 Darmstadt, Germany,
¹jorks@temf.tu-darmstadt.de
²gjonaj@temf.tu-darmstadt.de
³weiland@temf.tu-darmstadt.de

Summary We investigate the high frequency eddy currents and compute the Common Mode Impedance of a PWM controlled induction motor by Finite Element simulations. It is shown that in order to determine machine parameters accurately, three-dimensional analysis taking into account explicitly the eddy currents induced in the iron core laminations is necessary.

1 Introduction
Modern induction machines are most often powered by Pulse Width Modulation (PWM) voltage source inverters. Although PWM switching clearly improves the overall performance and efficiency of the drive system, it also promotes the formation of common mode voltages which may evoke harmful high frequency bearing currents [1]. While the PWM switching frequency is usually in the order of 20 kHz, the short rise time of the pulses may induce higher frequency currents of several MHz in the housing, laminated core as well as in the shaft bearings of the machine. Therefore, when analysing PWM controlled induction machines, a broad frequency range has to be considered.

An essential parameter in the equivalent circuit representation of electric drives is the Common Mode Impedance (Z_{com}). This quantity allows to compute among others the bearing currents for different machine operation conditions. In the following, Z_{com} will be determined exclusively from Finite Element (FE) simulations. Using this approach substantial information can be obtained already in the design stage without necessitating on-machine measurement data.

In the FE analysis of induction machines, several symmetries can be exploited. Usually, for the middle part a two-dimensional (2D) projection of the motor cross section is considered [2]. In this paper, however, a fully three-dimensional (3D) analysis is proposed which allows to take into account explicitly the eddy currents induced in the core laminations. The end-windings, which in general do additionally contribute to Z_{com}, are not considered in the present analysis. The Common Mode calculation is completed by assembling the parameter matrices extracted from the middle and eventually the end parts of the machine using transmission line theory [3].

2 Lamination Modelling
Eddy currents in core laminations have been found to have a large impact on the transmission line parameters and, thus, on the Common Mode Impedance of PWM driven induction machines [3,4]. Magnetic machine cores are specifically designed to suppress eddy currents at supply frequency. However, higher frequency voltage harmonics arising from PWM switching may lead to pronounced eddy currents loops in the core. This is because the skin depth in the iron at PWM frequencies becomes comparable or even smaller than the thickness of lamination sheets.

When employing laminated materials in FE analysis it is often not possible to model every single iron sheet because this would lead to enormous computational costs. Instead, the lamination is treated as a homogeneous material adopting equivalent electromagnetic properties. A well-known homogenisation model utilizes a frequency dependent equivalent permeability for the iron core given by,

$$\mu_{eq} = \frac{\mu_0 \mu_r \sinh(ab)}{ab \cosh(ab)}, \quad a = \frac{(1+j)}{\delta}, \quad (1)$$

where μ_0 is the permeability of iron, 2b the thickness of the plate and δ the skin depth at a given frequency [5]. The magnetic field problem for the homogenised core in the middle part of the motor reduces to a planar 2D problem. While this approach allows for very efficient 2D-FE analysis, certain inaccuracies can be expected. First, the equivalent model (1) assumes a uniform primary magnetic field with no variation in the cross-sectional plane of the motor (cf. [5]). Second, possible edge effects in the eddy current distribution arising at the winding yoke transitions are not considered. Finally, in the
equivalent permeability model the iron core is considered to be non-conductive. Hence, the field reaction to the eddy current loops is neglected. The conductivity of iron is only introduced in post-processing for calculating electric losses. Thus, in particular in the high frequency range, it may be necessary to perform a more detailed eddy current analysis which takes into account all of these effects in core laminations.

3 Fully 3D-FE Approach

For testing purposes, a circular conductor model is considered (see Fig. 1). The copper conductor is surrounded by a laminated iron core. The lamination layers consist of oxide insulation sheets with a thickness of 0.65 mm. The width of the air gap between conductor and core is 0.1 mm.

In the homogenized equivalent permeability model (1), the eddy current problem can be solved analytically. For comparison, the geometry is discretized with a 3D mesh and analysed by means of FE simulations. In the first set of simulations the equivalent permeability is employed while in the second fully 3D-FE analysis including the iron and oxide layers is applied. Resulting electric losses and stored magnetic energy in the conducting parts of the arrangement are shown in Fig. 2. While the homogenized model gives quite accurate results in the copper conductor at lower frequencies (< 1 kHz), electric losses in the iron are subject to major errors (46% in this model), independent of frequency. However, at low frequencies, copper losses are much greater than iron losses. At higher frequencies, the field solution in the copper conductor is increasingly influenced by the lamination and large deviations occur for both electric losses and magnetic energy. Considering the present analysis, the homogenization approach (1) might not be valid for high frequency simulations of induction motors.

Therefore, the fully 3D approach will be applied to calculate the Common Mode Impedance of an existing 240 kW motor and will be presented in the full paper.

Fig. 2: Electric loss (top) and stored magnetic energy (bottom) for the single conductor model.

Acknowledgement This work is founded by the Deutsche Forschungsgemeinschaft (DFG) under the collaborative research group grant FOR 575.

References

Electrical Modelling of Large-area Organic Light-emitting Devices

Evelyne Knapp and Beat Ruhstaller

Institute of Computational Physics, Zurich University of Applied Sciences, Wildbachstr. 21, 8401 Winterthur, Switzerland
evelyne.knapp@zhaw.ch, beat.ruhstaller@zhaw.ch

Summary. Systematic improvement of the performance and lifetime of organic light-emitting devices (OLEDs) are facilitated by electrical characterization through experiments and simulations. We model charge transport in organic disordered materials with the aid of a numerical 1D model for different experimental setups such as current-voltage curves, current transients and electrical impedance spectroscopy. For large-area OLEDs we couple the anode and cathode with the 1D model leading to an efficient 1+2D approach.

2 Physical Model

The drift-diffusion model (1) and (2) with the organic model ingredients (such as a Gaussian density of states and the use of the Fermi-Dirac statistics) are discretized with the finite volume method, the current expression [3] with the Scharfetter-Gummel discretization [7]. The resulting system of discretized equations is then solved in a coupled manner with Newton’s algorithm for the transient as well as the steady-state case [8].

\[
\nabla \cdot (\varepsilon \nabla \psi) = q(n_f + n - p_f - p_0), \quad (1)
\]
\[
\nabla \cdot J_n - \frac{q}{\hbar} \frac{\partial n}{\partial t} = qR(n_f, p_f), \quad (2)
\]
\[
\nabla \cdot J_p + \frac{q}{\hbar} \frac{\partial p}{\partial t} = -qR(n_f, p_f),
\]
\[
J_n = -qn_f \mu_p \nabla \psi + qD_n \nabla n_f,
\]
\[
J_p = -qp_f \mu_n \nabla \psi - qD_p \nabla p_f. \quad (3)
\]

For the small-signal analysis, the steady-state voltage \(V_0 \) is modulated with a sinusoidal voltage with the amplitude \(V_{\text{ac}} \) and with the angular frequency \(\omega \): \(V = V_0 + V_{\text{ac}} \sin \omega t \). The potential \(\psi \) and the charge densities \(p \) and \(n \) can be expanded into a steady-state and harmonic term, e.g. \(\psi(x,t) = \psi_0(x) + \psi_{\text{ac}}(x)e^{i\omega t} \) where the ac components are complex-valued. To solve the small-signal equations, the solution of the dc problem for \(V = V_0 \) is required. After inserting the expansions into the linearized drift-diffusion model we obtain a linear system of equations for the unknown ac components and thus for the ac current \(J_{\text{ac}} \). From the complex admittance \(Y = J_{\text{ac}}/V_{\text{ac}} \), the small-signal capacitance \(C \) and conductance \(G \) can be obtained.

Charge traps originate in impurities or material degradation and affect the transport. In Fig. [1] we show the effect of different charge trap types on the normalized capacitance at different frequencies. Fast traps are in quasi-equilibrium with free carriers, the transit time is longer than the trapping time whereas for slow traps the transit time is shorter than the trapping time. Slow traps enhance the capacitance at low frequencies while fast traps follow the dynamics of the trap-free case [9]. Similarly, charge traps affect current transients and current-voltage curves.
3 2+1D Approach for Large-area OLEDs

Aiming for a fast PC model for large-area OLEDs we have to take into account that realistic OLED structures consist of transparent anodes with a relatively low electrical conductivity. This affects the homogeneity of the OLED. Metal grid structures are applied to large-area OLEDs to improve the situation. To quantify the potential and temperature drop in large-area OLEDs we extend the 1D modelling of the organic material to higher dimensions. The 2+1D approach captures the important features of the transport process, and accounts for the high aspect ratio between the in-plane and the through-plane dimensions of OLEDs. In comparison to full 3D models, the 2+1D approach requires a reduced number of degrees of freedom, but still provides the lateral potential and temperature distribution. We make use of our in-house FEM tool (SESES) that allows the nonlinear coupling of 2D domains with the aid of the 1D model as shown in Fig. 2. The connection between the anode and cathode can either be:

- a parameterized experimental curve
- an analytical formula
- or a numerical model.

In Fig. 2 we show an OLED panel before optimizing the metal grid layout. No metal structure is present to improve the homogeneity of the OLED.

4 Conclusions

In this paper, we present a 1D model for organic LEDs that is applied to different operating conditions such as steady-state, transient and ac response. We investigate different charge trap types and their influence on the frequency-dependent capacitance. Further, we propose a 2+1D modeling approach for large-area OLEDs.
Efficient solvers for optimal control of eddy current problems with regularized state constraints

Michael Kolmbauer\(^1\) and Ulrich Langer\(^1,2\)

\(^1\) Institute of Computational Mathematics, Johannes Kepler University, Altenbergerstr. 69, A-4040 Linz, Austria. kolmbauer@numa.uni-linz.ac.at
\(^2\) RICAM, Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, Altenbergerstr. 69, A-4040 Linz, Austria. ulrich.langer@assoc.oeaw.ac.at

Summary. This work is devoted to the robust and efficient solution of an optimal control problem for time-harmonic or time-periodic eddy current problems in the presence of pointwise state constraints imposed on the Fourier coefficients. For the discrete version of the linearized and reduced optimality systems of the Moreau-Yosida penalized minimization problems, condition number estimates of the preconditioned systems are provided. We show, that block-diagonal preconditioners can lead to parameter-robust and efficient solution strategies for these kind of problems.

1 Introduction

During recent years, the importance of solving optimization problems with constraints in form of partial differential equations has been growing. Usually, the partial differential equation is treated as a constraint, and the minimizing solution is determined by solving the corresponding optimality system. Typically, this approach leads to very bad condition systems of linear equations, and therefore the iterative solution of these kind of equations is a delicate issue.

In [23] an optimal control problem with a simple time-periodic parabolic partial differential equation as the state equation is considered. The optimality system is discretized in terms of the harmonic balance finite element method, and parameter robust solvers are constructed for the resulting frequency domain equations. The aim of this work is to extend these ideas also to the eddy current optimal control problem, cf. [43]. Therefore, we consider optimal control problems, where the partial differential equations is given by time-harmonic or time-periodic eddy current problems. Indeed, in the time-periodic setting, we establish the harmonic balance finite element method, in combination with efficient and robust solvers for the resulting frequency domain equations, as a powerful tool for solving optimal control problems in computational electromagnetics.

Furthermore, we include pointwise state constraints in our model, since they may be important to filter out undesired singularities in the solution of the eddy current problem.

2 Optimal control problem

We concentrate on the solution of the following optimal control problem:

\[
\min_{(y^c, y^s, u^c, u^s)} J(y^c, y^s, u^c, u^s),
\]

subject to

\[
\begin{align*}
\text{curl}(v \text{curl} y^c) + \omega \sigma y^s &= u^c, & \text{in } \Omega, \\
\text{curl}(v \text{curl} y^s) - \omega \sigma y^c &= u^s, & \text{in } \Omega, \\
y^c \times n &= 0, & \text{on } \partial \Omega,
\end{align*}
\]

and to the pointwise state constraints

\[
y^d_j(x) \leq y^j(x) \leq y^b_j(x), \quad \text{a.e. in } \Omega, j \in \{c, s\}.
\]

The quadratic cost functional is given by

\[
J(y^c, y^s, u^c, u^s) := \frac{1}{2} \sum_{j \in \{c, s\}} \left[\|y^j - y^d_j\|^2 + \lambda \|u^j\|^2_0 \right].
\]

The regularization parameter \(\lambda > 0\), the model parameters \(\sigma, \nu\) and \(\omega\), and \(y^d_j, y^c_j, y^s_j, y^b_j, y^d_j \in L^2(\Omega)\) are given data.

Following [6], we use a Moreau-Yosida regularization, that penalizes the pointwise state constraints, i.e., we add the penalty term

\[
\frac{1}{2\varepsilon} \sum_{j \in \{c, s\}} \left[\max(0, y^j - y^d_j)\|^2_0 + \min(0, y^j - y^d_j)\|^2_0 \right],
\]

\(\varepsilon > 0\), to the cost functional \(J\). The resulting minimization can be solved by deriving the (reduced) optimality system. Due to the penalized state constraints, the optimality system becomes nonlinear. The nonlinearity can be dealt with in terms of a primal dual active set strategy, that is known to be equivalent to the semi-smooth Newton method [1]. At each Newton step, a two-fold saddle point problem has to be solved. Typically, the model parameters \(\sigma, \nu\) and \(\omega\), the regularization parameters \(\lambda\) and \(\varepsilon\), as well as the discretization parameter \(h\), coming from the finite element approximation, impinge on the convergence of any iterative method applied to the unpreconditioned problem. Therefore, the aim of this paper is to present a preconditioning technique for the robust and efficient solution of the saddle point system at each Newton step.
3 Block-diagonal preconditioner

The finite element discretization of the penalized, linearized and reduced optimality system of (1)–(3), yields the linear system of equations

$$\mathcal{A}x = b,$$ \hspace{1cm} (4)

where the system matrix \(\mathcal{A}\) is given by

$$\mathcal{A} = \begin{pmatrix}
M + \frac{1}{2}M_{d\sigma} & 0 & K_{\nu} & -M_{d\sigma} \\
0 & M + \frac{1}{2}M_{d\sigma} & M_{d\sigma} & K_{\nu} \\
K_{\nu} & M_{d\sigma} & -\frac{1}{2}M & 0 \\
-M_{d\sigma} & K_{\nu} & 0 & -\frac{1}{2}M
\end{pmatrix}.$$ \hspace{1cm} (5)

Here \(K_{\nu}\) corresponds to the stiffness matrix, \(M\) to the mass matrix, \(M_{d\sigma}\) to a weighted mass matrix, and \(M_{d\sigma}\) and \(M_{d\sigma}\) to the mass matrices on the active sets \(\delta^c\) and \(\delta^s\), respectively. In order to solve (4), we follow the strategy used in [3] and construct a preconditioned MinRes solver. We propose and analyze the block-diagonal preconditioner

$$\mathcal{C} = \text{diag}(\sqrt{\lambda}E, \sqrt{\lambda}E, \frac{1}{\sqrt{\lambda}}E, \frac{1}{\sqrt{\lambda}}E),$$ \hspace{1cm} (6)

where \(E = K_{\nu} + M_{d\sigma} + \frac{1}{\sqrt{\lambda}}M\). We show that the condition number of the preconditioned system can be estimated by a constant, that is independent of the condition number of the preconditioned system can be estimated by a constant, that is independent of the mesh size \(h\), the regularization parameter \(\lambda\), the model parameters \(\sigma, \nu\), and \(\omega\) as well as the active sets \(\delta^c\) and \(\delta^s\) from the primal dual active set strategy, i.e.,

$$\kappa(\mathcal{C}^{-1}\mathcal{A}) \leq c \neq c(\omega, \sigma, h, \lambda, \delta^c, \delta^s).$$

Therefore, the number of MinRes iterations required for reducing the initial error by some fixed factor \(\delta \in (0, 1)\) is independent of \(\omega, \sigma, h, \lambda, \delta^c, \) and \(\delta^s\). In practice, the diagonal blocks \(E\) of (5) are replaced by appropriate efficient and parameter robust pre-conditioners.

4 Time-periodic optimization

The presented solving technique provides a robust tool for solving optimal control problems with a time-harmonic eddy current problem as the state equation. Indeed, the theory can be extended to time-periodic optimal control problems of the form:

$$\min J(u, y) = \frac{1}{2} \int_0^T \|y - y_d\|^2 dt + \frac{\lambda}{2} \int_0^T \|u\|^2 dt,$$

subject to

$$\begin{aligned}
\frac{\partial y}{\partial t} + \text{curl}(\nu \text{curl} y) &= u, & \text{in } \Omega \times (0, T), \\
y \times n &= 0, & \text{on } \partial \Omega \times (0, T), \\
y(0) &= y(T), & \text{in } \Omega,
\end{aligned}$$ \hspace{1cm} (6)

with state constraints associated to the Fourier coefficients of \(y\). Due to the periodic structure, a time approximation of the state \(y\) and the control \(u\) in terms of a truncated Fourier series can be used, i.e.,

$$y(x, t) = \sum_{k=0}^N y_k^c \cos(ka) + y_k^s \sin(ka).$$

Due to the linearity of (6), we obtain a decoupling of the frequency domain equations with respect to the individual modes \(k = 0, \ldots, N\). For each mode, a linear system of equations, that obtains high structural similarities to (4) has to be solved. Hence, an efficient and parameter robust solver can be constructed in the same manner as done in the previous section. Indeed, this approach is an extension the harmonic balance finite element method to optimal control problems.

5 Conclusion

The method developed in this work shows great potential for solving both time-harmonic and time-periodic eddy current optimal control problems in an efficient and robust way.

Acknowledgement. The research was funded by the Austrian Science Fund (FWF) under the grants P19255-N18 and W1214-N15, project DK04. Furthermore, the authors thank the Austria Center of Competence in Mechatronics (ACCM), which is part of the COMET K2 program of the Austrian Government, for supporting their work on eddy current problems.

References

Optimal design of reflecting photonic structures for space applications

Nikolay Komarevskiy¹, Valery Shklover¹, Leonid Braginsky¹, Christian Hafner¹, and John Lawson²

¹ Swiss Federal Institute of Technology (ETH) Zürich, 8092 Zürich, Switzerland
n.komarevskiy@ifh.ee.ethz.ch, V.SHKLOVER@mat.ethz.ch, leonid.braginsky@mat.ethz.ch, christian.hafner@ifh.ee.ethz.ch
² MS-234-1, NASA Ames Research Center, Moffett Field, 94035 California, USA john.w.lawson@nasa.gov

Summary. During atmospheric entries, vehicles can be exposed to strong electromagnetic radiation from gas in the shock layer. We propose and analyze silicon carbide and glassy carbon structures to increase the reflection of radiation. We performed numerical optimizations of photonic structures using an evolutionary strategy. Among the considered structures are layered, woodpile, porous and guided-mode resonance structures. The role of structural imperfections on the reflectivity is analyzed.

1 Introduction

Practical applications of photonic crystals (PhCs) are diverse [1,2]. An interesting, but not yet practically realized, application of PhCs is as radiation shields for atmospheric re-entry of space vehicles. Electromagnetic radiation from ionized gas in the shock layer can constitute up to 30-50% [3] of the overall heat flux for lunar return trajectories, although for relatively short times. For Jupiter entries, on the other hand, most of the heating is radiative [4]. Therefore, in addition to protection against convective heating, a reentry thermal protection systems (TPS) should also be designed for radiation shielding. Ideally, the design should be tuned to the radiative spectra of a specific planet and specific entry conditions.

One of the easiest way to design radiation shields for atmospheric re-entry is with layered media [5]. Provided the two constituent materials possess a sufficient dielectric contrast and low absorption, broadband radiation shields with high omnidirectional reflection can be designed [6]. However, applications such as atmospheric re-entry impose many additional constraints on the material properties (thermal, mechanical, etc.). Therefore, finding a suitable pair of materials can be very demanding.

Currently, TPS for the most demanding atmospheric re-entries are made of highly porous carbon based materials. These materials, for example, PICA (phenolic-impregnated carbon ablators), possess many of the required thermal and mechanical properties. However, these materials are strong absorbers of radiation and therefore currently offer no protection at all from radiative heating. On the other hand, if these materials could be structured in such way that high reflection is obtained, radiative heating of the vehicle during re-entry could be reduced. We analyze the potential of glassy carbon and silicon carbide as radiation shields for Earth atmospheric re-entry. The effects of structural imperfections on reflectivity are also analyzed.

1.1 Optimization goal

The goal is to design a radiation shield that maximizes the total reflection of normally incident unpolarized radiation u_ν, shown in Fig. 1.

Therefore, the function to be maximized is:

$$\langle R_{\nu} \rangle = \frac{\int R_{\nu}u_\nu d\nu}{u_{\text{tot}}}, \quad u_{\text{tot}} = \int u_\nu d\nu,$$

where R_{ν} is the total reflection of the incident unpolarized radiation:

$$R_{\nu} = 0.5(R^s + R^p),$$

where R^s and R^p are the sum of reflection efficiencies for the s- and p-polarization, respectively:

$$R^{s,p} = R_0^{s,p} + \sum D_i^{s,p}, \quad i = \pm 1, \pm 2, \ldots$$

Fig. 1. (Red curve - experimental data of spectral radiation distribution, obtained at atmospheric re-entry relevant conditions [7] blue dashed curve - spectrum smoothed with Gaussian window function of full width $\Delta f = 10$ THz.)
For numerical optimization, we used evolutionary strategy (ES) algorithms. Based on previous experience [8], it is very powerful for real parameter optimization problems and outperforms genetic algorithm, particle swarm optimization, and other methods in most cases. We used an \((m+n)\) evolutionary strategy with adaptive mutation for the optimization. Here \(m\) is the initial number of parents and \(n\) is the number of children created in each generation.

Some of the structures to be optimized are shown in Fig. 2.

![Fig. 2. (From left to right: guided mode resonance structure, woodpile, porous-reflector)](image)

Acknowledgement. This work was supported by ETH project 0-20590-09, Materials for Infra Red Protection.

References

The (1+1)D Space-Time Discontinuous Galerkin Trefftz Method

Fritz Kretzschmar, Sascha M. Schnepp, Igor Tsukerman, and Thomas Weiland

1 Graduate School of Computational Engineering, Technische Universität Darmstadt, Dölivostraße 15, 64293 Darmstadt, Germany kretzschmar@gsc.tu-darmstadt.de, schnep@gsc.tu-darmstadt.de
2 Department of Electrical & Computer Engineering, The University of Akron, Akron, Ohio 44325-3904, USA itsukerman@uakron.edu
3 Institut für Theorie Elektromagnetischer Felder, Technische Universität Darmstadt, Schloßgartenstraße 8, 64289 Darmstadt, Germany thomas.weiland@temf.tu-darmstadt.de

Summary. A novel Discontinuous Galerkin Finite Element Method for space–time electromagnetic problems is presented. The method employs space–time Trefftz basis functions that satisfy the underlying partial differential equations exactly in an element–wise fashion. A major advantage of Trefftz approximations is their high accuracy that in many cases leads to spectral convergence. First computational results are presented.

1 Introduction

Discontinuous Galerkin Finite Element Methods (DGFEM) [1,2] are a major class of tools to numerically simulate complicated Electromagnetic (EM) systems. Here we present a highly accurate type of DGFEM. A distinguishing new feature of the method is the use of Trefftz basis functions instead of the traditional generic polynomials. By definition space–time Trefftz basis functions satisfy Maxwell’s equations exactly in a element–wise fashion. The method is, hence, a Discontinuous Galerkin Trefftz Finite Element Method (DGT-FEM) [5].

2 Development of the Method

This section consists of three parts. First, we state Maxwell’s equations in (1+1)D. Second, we derive a weak formulation of Maxwell’s equations and finally introduce Trefftz-type basis functions.

2.1 Maxwell’s Equations in 1D

For a wave traveling in the x-direction, with electric and magnetic fields polarized as \(E := E_x \), and \(H := H_z \), we can write Maxwell’s equations in the one dimensional form

\[
\begin{bmatrix}
\frac{\partial}{\partial t} & \frac{\partial}{\partial x}
\end{bmatrix}^T \begin{bmatrix}
\varepsilon & 0 \\
0 & \mu
\end{bmatrix} \begin{bmatrix}
E \\
H
\end{bmatrix} = 0,
\]

(1)

Here \(\mu \) is the magnetic permeability and \(\varepsilon \) is the dielectric permittivity. We assume the space–time domain of interest \(\Omega \) to be free of any sources. With the abbreviations

\[
\eta_e := \begin{bmatrix}
\varepsilon & 0 \\
0 & 1
\end{bmatrix}, \quad \eta_\mu := \begin{bmatrix}
0 & \mu \\
1 & 0
\end{bmatrix} \quad \text{and} \quad \nabla := \begin{bmatrix}
\frac{\partial}{\partial x}
\end{bmatrix},
\]

we cast Maxwell’s equations into the form

\[
\nabla^T \cdot \eta_e \cdot F = 0 \quad \text{and} \quad \nabla^T \cdot \eta_\mu \cdot F = 0.
\]

(2)

Here the EM field vector \(F \) reads

\[
F := \begin{bmatrix}
E \\
H
\end{bmatrix}.
\]

2.2 Weak DG-Form of Maxwell’s Equations

We obtain the weak form of (2) by multiplying (2) with a vectorial test function

\[
\nu := \begin{bmatrix}
\nu_e \\
\nu_H
\end{bmatrix},
\]

and integrating over the domain of interest. This leads to the following form

\[
\int_\Omega (\nabla^T \cdot \eta_e \cdot F) \nu_e^T dA + \int_\Omega (\nabla^T \cdot \eta_\mu \cdot F) \nu_H^T dA = 0,
\]

After integration by parts and a subsequent application of the Gauss Theorem the weak form of Maxwell’s equations reads

\[
\int_{\partial\Omega} \nu_e^T (\eta_e \cdot F) \cdot \mathbf{n} d\Gamma - \int_\Omega (\nabla^T \cdot \eta_e \cdot F) \cdot \mathbf{n} dA
\]

(3)

\[
+ \int_{\partial\Omega} \nu_H^T (\eta_\mu \cdot F) \cdot \mathbf{n} d\Gamma - \int_\Omega (\nabla^T \cdot \eta_\mu \cdot F) \cdot \mathbf{n} dA = 0.
\]

where \(\mathbf{n} \) is the unit normal on the space-time domain boundary \(\Gamma := \partial\Omega \).

2.3 The Trefftz Basis

Standard FEM uses generic polynomials as basis functions. However, problem–specific basis functions, especially Trefftz-type functions [6] can provide much...
better accuracy. Here, we use vectorial basis functions whose components are transport polynomials (see Fig. 1) of the form

\[
\mathbf{u}^p_{\pm} = \begin{pmatrix}
 u^{E,p,\pm} = \pm(x \pm vt)^p \\
 u^{H,p,\pm} = Z(x \pm vt)^p
\end{pmatrix},
\]

where \(Z = \sqrt{\frac{\mu}{\varepsilon}} \) is the intrinsic impedance and \(v \) the speed of light in the medium. The basis function \(\mathbf{u}^{p,+} \) corresponds to a wave traveling leftward whereas \(\mathbf{u}^{p,-} \) corresponds to a wave traveling rightward, \(p \) is the order of the basis function. The field vector is a linear combination of the Trefftz waves

\[
\mathbf{F} = \sum_{p=0}^{P} f^p (\mathbf{u}^{p,+} + \mathbf{u}^{p,-}),
\]

where \(P \) is the maximum order of approximation and \(f^p \) is the field coefficient of order \(p \). Therefore the total number of coefficients \(f^p \) is \(2(1+P) \), each corresponding to a vectorial basis function \(\mathbf{u}^p \).

![Fig. 1. The first four transport polynomials of order \(p = 0, p = 1, p = 2 \) and \(p = 3 \) plotted in a computational space-time domain \((x,t) \in [-1,1] \times [-1,1]\).](image)

3 Results

As a first test of the new method, we simulate a Gaussian wave in a domain with an interface between two media at \(x = -5 \). For obtaining Fig. 2 we set \(P = 10, N_t = 30 \) and \(N_x = 60 \). The medium left of \(x = -5 \) is a medium with \(\mu = 1 \) and \(\varepsilon_r = 16 \). The space–time solution shows the right behavior in each medium. At the interface a partial reflexion occurs with the right amplitudes of the reflected and transmitted waves. Also the speed-of-light in the medium changes (by a factor of four) resulting in a different trace-angles. In Fig. 3 the relative error of the vacuum simulation is plotted against the number of the Degrees of Freedom (DoF). We obtain exponential convergence of the relative error measured in the \(L^2 \) norm.

![Fig. 2. The electric field of a 1D Gaussian wave, simulated with the DGT-FEM. The solution in the whole space-time domain of interest \((x,t) \in [-15,15] \times [0,60]\) is displayed. A medium interface is set at \(x = -5 \).](image)

![Fig. 3. The relative error of the vacuum simulation plotted against the number of the Degrees of Freedom.](image)

References

Novel alternate mixed-mode chaotic circuit models for secure communication

Umesh Kumar
Department of Electrical Engineering
IIT, New Delhi, India
E.mail:drumeshkumar98@rediffmail.com

Abstract—In this paper we explore alternative models to implement the nonautonomous as well as autonomous chaotic dynamics in mixed-mode chaotic circuits. The parallel LC circuit based MMCC model and Wien bridge oscillator based MMCC model are presented alongside their Pspice simulations to verify their mixed mode chaotic behaviour. Virtual simulations of alternative implementations of mixed-mode chaotic circuit were found satisfactory and successful.

Keywords:- Chaos, chaotic oscillator, mixed-mode chaotic circuit, Parallel LC circuit, Wien bridge circuit, secure communication.

I. INTRODUCTION

The first mixed-mode chaotic circuit was proposed by Recai Kilic et al in 2000 [1] which is a combination of both an autonomous chaotic Chua’s circuit and a nonautonomous chaotic MLC circuit developed by Murali et al in 1994 [9]. It is able to provide greater realiability in the form of a wide range of parameter variations and extra security keys. Since then various improved realisations of MMCC have been presented [2,3,4] including circuits using CFOA’s. Senani R and Gupta S S [8] have reported implementation of Chua’s chaotic circuit using current feedback Op amps in 1998. Robust Op amp realisations of Chua’s circuit was reported by Kenndy M P[10] in the year 1992. Recently MMCC circuits using quadrature core oscillators and blocks were reported by Klomkarn K and Sooraksa P [5,11] in the years 2010 -2011. Work on impulsive synchronization between two MMCC have also been reported by Recai Kilic [6, 7] in the years 2005 and 2006.

II. ALTERNATE REALISATIONS

(a) The parallel LC autonomous model

![Parallel LC circuit based MMCC circuit](image1)

In this model, we have replaced the series LC combination in the non-autonomous mode with a parallel LC circuit as shown above in figure 1.

(b) Wien bridge oscillator based MMCC model

![Wien bridge oscillator based MMC Model](image2)

In this model, we have replaced the original autonomous part with a Wien Bridge Oscillator based implementation. Theoretically a gain of 3 would be required to start the oscillations. In our
circuit, we have implemented a slightly higher gain, that is, a gain of 3.1.

III CONCLUSIONS

Virtual simulations of alternative implementations of the mixed-mode circuit were successful and satisfactory. As can be seen from the transient analysis of capacitor voltage, we see how the circuits jump to and fro the non-autonomous and the autonomous mode of operation. The first model clearly exhibits the characteristics of a parallel LC circuit along with the dynamics due to the autonomous mode. The resultant chaos was satisfactory. The Wien Bridge Oscillator based model was simulated and the resulting plot showed double scroll attractor characteristic.

REFERENCES

Derivation and test of high order fluid model for streamer discharges

Aram Markosyan\(^1\), Saša Dujko\(^1,2\), and Ute Ebert\(^1,3\)

\(^1\) CWI, P.O. Box 94079, NL-1090 GB Amsterdam, Netherlands \texttt{Aram.Markosyan@cwi.nl}
\(^2\) Institute of Physics, P.O.Box 68, 11080 Zemun Belgrade, Serbia \texttt{sasha@phy.bg.ac.yu}, \texttt{S.Dujko@cwi.nl}
\(^3\) Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands \texttt{Ebert@cwi.nl}

Summary. A high order fluid model for streamer dynamics is developed by closing the system after the 4th moment of the Boltzmann equation in local mean energy approximation. This is done by approximating the high order pressure tensor in the heat flux equation through the previous moments. Mathematical characteristics of the system is studied. Then planar ionization fronts for negative streamers in \(N_2\) are simulated with the classical streamer model, MC-PIC particle model, and with the present higher order model.

1 High order fluid model

Streamer discharges occur in nature and as well in many industrial applications such as the treatment of exhaust gasses, polluted water or biogas. They appear when non-ionized or lowly ionized matter is exposed to high electric fields. Here we present a high order fluid model for streamer discharges, and we use it to simulate planar ionization fronts for negative streamers in nitrogen under normal conditions; and we compare the results with those of the classical fluid model.

1.1 Model description

The high order model is derived by taking the first 4 moments of the Boltzmann equation, i.e., by multiplying the Boltzmann equation with the \(k\)th power of velocity (\(k = 0, 1, 2, 3\)) and integrating over velocity space. In principle, the set of moment equations is infinite, but we consider only electron density (\(k = 0\)), momentum (\(k = 1\)), energy (\(k = 2\)) and energy flux (\(k = 3\)). The system is truncated in the energy flux equation (4) by approximating the high order pressure tensor by the product of lower order moments and by introducing factor of parametrization \(\beta\). As a result the hydrodynamical formalization of the streamer dynamics in 1D is described by the nonlinear system of equations

\[
\frac{\partial}{\partial t} \mathbf{u} + A(\mathbf{u}) \frac{\partial}{\partial x} \mathbf{u} = \mathbf{F}(\mathbf{u}), \tag{1}
\]

where the primitive variables are

\[
\mathbf{u} = (n, m, n\varepsilon, n\xi)^T, \tag{2}
\]

the matrix \(A(\mathbf{u})\) is defined in following way

\[
A(\mathbf{u}) = \begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & \frac{1}{2m} & 0 \\
0 & 0 & 0 & 1 \\
-\beta \frac{2\varepsilon^2}{3m} & 0 & \frac{\varepsilon}{3m} & 0
\end{pmatrix}, \tag{3}
\]

and the source term is

\[
F(\mathbf{u}) = \begin{pmatrix}
qv_I \\
qE_n - n\{ \varepsilon \varepsilon_0 (\varepsilon_0 - \frac{1}{2}kT_0) + \sum_{\alpha} \nu_{\alpha}\varepsilon_{\alpha\alpha} + \nu_{\beta} E_\beta \}
\end{pmatrix}. \tag{4}
\]

Here \(n, \varepsilon, \xi\) are electron number density, average electron velocity, average electron energy and electron energy flux, correspondingly. \(E\) is the electric field and \(T_0\) is room temperature. \(\nu_m(\varepsilon)\) and \(\nu_v(\varepsilon)\) are the momentum and elastic energy transfer collision frequencies, \(\nu_I(\varepsilon)\) is the ionization frequency and \(\nu_{\alpha\alpha}(\varepsilon)\) are the collision frequencies for inelastic processes. As charge is conserved, the continuity equation for the ion density \(n_{\text{ion}}\) is

\[
\frac{\partial n_{\text{ion}}}{\partial t} = n\nu_I, \tag{5}
\]

when the ions are approximated as immobile. Space charge effects are taken into account through the Poisson equation

\[
\frac{\partial}{\partial x} E = \frac{e}{\varepsilon_0} (n_{\text{ion}} - n), \tag{6}
\]

where \(\varepsilon_0\) is the dielectric constant and \(e\) is the elementary charge.

Mathematical characteristics and numerical solution of the system

Lemma 1. The system (1) is hyperbolic if and only if

\[
\beta = 0 \quad \text{or} \quad \beta \geq 1. \tag{7}
\]

In the case of \(\beta > 1\), the system (1) is strictly hyperbolic.

Although the eigenvalues of (1) have a simple form, the corresponding right and left eigenvectors are very complicated, which makes it impossible to work with them.
The finite volume method is used to spatially discretize the system (1), (5), (9) on uniform control volumes or cells \(V_j \) as follows:

\[
V_j := [j \Delta x, (j+1) \Delta x), \quad x_j := \left(j + \frac{1}{2}\right) \Delta x, \quad (8)
\]

where \(j = 0, 1, ..., M - 1 \), \(\Delta x = L/M \) is the spatial grid size and \(L \) is the length of the simulation domain. To approximate the spatial derivative in (1) we use the second-order central difference discretization \(\frac{\partial}{\partial x} \). In our numerical experiments we saw that this spatial discretization approximates quite well the analytically predicted front velocity for the minimal model \(\Pi \).

The time derivatives are approximated with the Runge-Kutta 4 method \(4 \). This is an explicit method, which always has a bounded stability domain. In our case the stability condition or CFL restriction is

\[
\beta \sqrt{\frac{2}{3m}} \sqrt{\max E} \frac{\Delta t}{2\Delta x} \leq C, \quad (9)
\]

where \(C \) depends on the particular method and space discretization. In our simulations we use the value \(C = 0.1 \).

1.2 Particle model and classical fluid model

In essentially all numerical fluid models for streamers in the past 30 years, except for \(3, 4 \), the electron density is approximated by a reaction drift diffusion approximation

\[
\frac{\partial}{\partial t} \rho \mu E n + D \frac{\partial n}{\partial x} = n v_f, \quad (10)
\]

This model is called the minimal model; it implies a local field approximation of reaction and transport coefficients.

As a second reference model we use the MC-PIC particle model from \(5 \).

2 Results and discussion

Fig. 1 compares the results of the high order model, the particle model and of the minimal model for the same initial and boundary conditions and for the same electric field ahead of the ionization front. A multi term theory for solving the Boltzmann equation \(6 \) is used to calculate flux transport coefficients and mean-energy dependent collisional rates required as an input in fluid equations.

The following main conclusions can be drawn:

1) The overall front structure is the same, but the particle model is much better approximated by the high order model than by the minimal model.

2) That the mean electron energy ahead of the front increases while the electric field is constant, was also seen in Monte Carlo simulations before \(2 \), but not yet included in fluid models. The mean electron energy behind the front where the electric field vanishes, is close to 1 eV, because energy relaxation is slow in this region. This feature was not included in fluid models before.

In summary, the new high order fluid model captures effects in streamer simulations that up to now were only inherent in the more microscopic Monte Carlo simulations. This is a step forward for long time calculations.

Acknowledgement. Aram Markosyan acknowledges support by STW-project 10751.

References

Simulation of a double-gate MOSFET by a non parabolic energy-transport subband model based on MEP including surface roughness scattering

V. D. Camiola1, G. Mascali2, and V. Romano1

1 University of Catania, Italy camiola@dmi.unict.it, romano@dmi.unict.it
2 University of Calabria, and INFN-Gruppo collegato di Cosenza, Italy mascali@unical.it

Summary. A nanoscale double-gate MOSFET is simulated by using a model based on the maximum entropy principle (MEP) by including the surface scattering roughness. The influence of this latter on the electrical performance of the device is discussed.

1 Mathematical model and simulations

The main aim of the paper is to simulate the nanoscale silicon double gate MOSFET (hereafter DG-MOSFET) shown in Fig. 1. The length of the diode is $L_x = 40$ nm, the width of the silicon layer is $L_z = 8$ nm and the oxide thickness is $t_{\text{ox}} = 1$ nm. The n^+ regions are 10 nm long. The doping in the n^+ regions is $N_D(x) = N_D^+ = 10^{20}$ cm-3 and in the n region is $N_D(x) = N_D^- = 10^{15}$ cm-3, with a regularization at the two junctions by a hyperbolic tangent profile.

Due to the symmetries and dimensions of the device, the transport is, within a good approximation, one dimensional and along the longitudinal direction with respect to the two oxide layers, while the electrons are quantized in the transversal direction. Six equivalent valleys are considered with a single effective mass $m^* = 0.32 m_e$, m_e being the free electron mass.

Since the longitudinal length is of the order of a few tens of nanometer, the electrons as waves achieve equilibrium along the confining direction in a time which is much shorter than the typical transport time. Therefore we adopt a quasi-static description along the confining direction by a coupled Schrödinger-Poisson system which leads to a subband decomposition, while the transport along the longitudinal direction is described by a semiclassical Boltzmann equation for each subband.

Numerical integration of the Boltzmann-Schrödinger-Poisson system is very expensive, from a computational point of view, for computer aided design (CAD) purposes (see references quoted in \cite{1,2}) In \cite{1} we have formulated an energy transport model for the charge transport in the subbands by including the non parabolicity effect through the Kane dispersion relation. The model has been obtained, under a suitable diffusion scaling, from the Boltzmann equations by using the moment method and closing the moment equations with the Maximum Entropy Principle (MEP). Scatterings of electrons with acoustic and non polar optical phonons are taken into account. The parabolic subband case has been treated and simulated in \cite{2}.

The main aim of the present paper is to include also the surface roughness scattering in which electrons scatter off the boundaries of the confining potential. The rate of this scattering is higher when the gate voltage increases and the width of the silicon layer is below ten nm and therefore comparable with the fluctuations in the oxide thickness. We want to assess the relevance of this scattering on the electric performance of the device after proposing an appropriate numerical scheme for the MEP energy transport-Schrödinger-Poisson system. In the Figures we report the results obtained by including the nonparabolicity effects but without surface roughness scattering. These preliminary simulations are rather encouraging and we are currently working upon the inclusion of the scattering at the surface.

Acknowledgement. V.D.C. and V. R. acknowledge the financial support by the P.R.I.N. project 2010 Kinetic and macroscopic models for particle transport in gases and semiconductors: analytical and computational aspects and by P.R.A. University of Catania. G. M. acknowledges the financial support by P.R.A., University of Calabria.

Fig. 1. Simulated DG-MOSFET
Fig. 2. Density in the case source-drain voltage $V_D = 0.5 \text{ V}$ and both gate voltages equal to -3 V

Fig. 3. Electrostatic potential energy in the same case as in Fig. 2

Fig. 4. Energies in the first three subbands in the case $V_D = 0.5 \text{ V}$ and lower gate voltage $V_{gl} = -3 \text{ V}$, upper gate voltage $V_{gu} = 3 \text{ V}$

Fig. 5. Velocities in the first three subbands in the same case as in Fig. 4

Fig. 6. Longitudinal mean current (A/cm) versus the source-drain voltage V_D with $V_{gl} = -3 \text{ V}$ and V_{gu} ranging from -3 V to +3 V according to the arrow

References

Summary. A fundamental relation between energy loss in electromagnetic engineering models leads to the definition of canonical stochastic fields. This canonical stochastic electromagnetic field model, which has been established in previous work (see [2–4]), is here used to construct stochastic processes weakly equivalent to the induced processes according to the canonical field model. Such processes can be used to test electronic systems, in particular communication links which are sensitive to specific correlation distances in induced noise.

1 Introduction

Because the environment in which an electronic system has to operate is not deterministically known, stochastic fields play an important role in electronic system testing. In this contribution, we elaborate on a fundamental relation between “energy loss” and stochastics generalising the well-known concept of noise temperature in electronics. The fundamental observation is that if a system’s model shows loss of electromagnetic energy into some environment, it is implied that this environment works as a stochastic source of electromagnetic energy on the system in question.

We shall first recall the definition of a canonical stochastic electromagnetic field having a good space-time covariance operator. Having available this “a priori” model for the stochastic fields in the environment we can try to compute directly those characteristics of the signals which are decisive for our purpose. An example of this is the auto-covariance function of induced noise sources, which gives essential information on the internal structure this noise. In this contribution, we show a rather simple way to compute this auto-covariance function for a large class of problems. We also show how to generate noise realisations, functions of time, and compute the appropriate statistics from simulation results. This may be a practical strategy for essentially non-linear problems or when a direct method is not known.

2 Basic field theory

The energy emission operator of time-domain electromagnetic field theory is given by $C(J) = E(J) - E(J^e)$ (X is the time reversal of X). This is the electric field propagator anti-symmetrised with respect to time reversal, i.e., $C(J) = -C(J)$. The following integral relation justifies the name.

$$\int_{\mathcal{D} \times \{t_1\}} (\mu_0 H^a \cdot H^b + e_0 E^a \cdot E^b) = -\int_{\mathcal{D} \times \{t_0(t_1)\}} C(J^b) \cdot J^a$$

(1)

Here (t_0, t_1) is a time interval and the current distributions J^a and J^b have their spatial support in \mathcal{D} and vanish outside the given time interval.

It has been shown in [4] that this energy emission operator is also the covariance operator, C_E, of a stochastic field defined by a probability measure on the space of initial values, $\mathcal{H}[\mathbb{R}^3 \times \{t_0\}]$, $(\mathcal{H}, \mathcal{S})$, here, denotes the vector-valued tempered distributions, i.e., by a stochastic distribution $\psi_0 = (e_0, h_0)$, such that

$$\forall f, g \in \mathcal{H} \quad \mathbb{E}(\langle \psi_0, f \rangle \langle \psi_0, g \rangle) = \sigma^2 \langle f, g \rangle_{\mathcal{H}}$$

where \mathcal{H} is Schwartz’ space of infinitely smooth test fields, \mathcal{H} is the direct sum Hilbert space with the inner product given by the LHS of (1) and $\mathcal{S} \subset \mathcal{H} \subset \mathcal{S}''$ are dense inclusions (see [1]). We obtain for any two distributions J^a and J^b,

$$\int_{\mathcal{D} \times \{t_0(t_1)\}} C_E(f^a) \cdot J^b = \sigma^2 \int_{\mathcal{D} \times \{t_0(t_1)\}} C(J^a) \cdot J^b$$

(2)

where E_0 is the electric field corresponding to the stochastic distribution ψ_0 on $\mathcal{D} \times \{t_0\}$ and σ^2 a variance parameter of this stochastic initial value distribution.

3 Observables on stochastic fields

We now concentrate on Thévenin sources representing the action of electromagnetic fields, in some environment, on an electronic system placed in it. Thévenin sources are “observables” defined through distributions on electromagnetic fields. For example, $\mathcal{V} = \langle J_P, E \rangle = \langle J_P, E \rangle$, where P is a curve defining an electronic port and E is the total electric field in the port region. If the electric field is a stochastic field, the given formula defines the Thévenin source as a generalised stochastic process.

An important characteristic is the auto-covariance of the Thévenin sources as function of time. Supposing that the average field is zero, we get,

$$\mathbb{E}(V(t_1) \langle V(t_2) \rangle) = \mathbb{E}(\langle J_{P_1}, E \rangle \langle J_{P_2}, E \rangle) = \langle J_{P_1}, C_E(J_{P_2}) \rangle$$

(3)
where \(C_E \) is the covariance operator of the stochastic field \(E \). Thévenin sources have alternative integral representations in terms of a time reversed current distribution, \(\hat{j}(t) \), on the conductors of the electronic system and only the incident part of the total electric field. The current distribution, \(j(t) \), appearing in such a representation is the one appearing by applying a Dirac current source to the electronic port considered. This current distribution corresponds to the scattering of an elementary dipole field by the conductors of the system. The electric field, \(e = C_E(j) \), appearing in (3), is the opposite of the trace of the elementary dipole field on the conductors. This simplifies (3) to

\[
\int \omega \in \mathbb{R} \langle j_\omega, E(j_\omega) \rangle \exp(j\omega t) = \int \omega \in \mathbb{R} R(j_\omega) \exp(j\omega t)
\]

and \(R(j_\omega) \) is the frequency domain radiation resistance of the current distribution \(j_\omega \).

For the second step, we use a well-known relation

\[
E[f(t)f(s)] = \int \omega \in \mathbb{R} \text{var}(\hat{f}(\omega)) \exp(j\omega(s-t))
\]

valid for spectral amplitudes \(\hat{f}(\omega) \) and \(\hat{f}(\nu) \) statistically independent if \(v \neq \pm \omega \). And, in addition satisfying \(E[\text{Re}(\hat{f}(\omega))\text{Im}(\hat{f}(\omega))] = 0 \) and \(E[\text{Re}(\hat{f}(\omega))^2] = E[\text{Im}(\hat{f}(\omega))^2] \). This result implies that a stochastic process which has spectral amplitudes satisfying the said constraints and have a variance equal to the frequency domain radiation resistance has the correct autocovariance function.

5 Conclusion

We obtain explicitly computable time functions which are realisations of a stochastic process statistically equivalent (with respect to the autocorrelation function) to an observable on a canonical stochastic field. This process includes the geometrical properties of the system, by means of the traversal times and the evaluation of the defining current distributions on the material configuration, but it also accounts for resonances in the configuration and between the configuration and the environment through the environment’s Green function which defines the space-time covariance operator of the canonical stochastic field.

References

CIBSOC Program – Spiral Inductor Inductance Calculation and Layout Optimization

Claudia Pacurar¹, Vasile Topa¹, Adina Racasan¹, Calin Munteanu¹

¹Technical University of Cluj-Napoca, 26-28 Baritiu Street, Romania, Claudia.Pacurar@et.utcluj.ro; Vasile.Topa@et.utcluj.ro; Adina.Racasan@et.utcluj.ro; Calin.Munteanu@et.utcluj.ro

Summary
Spiral inductors are very often used in integrated circuits for many applications. To design spiral inductors or to improve the spiral inductors performances it is absolutely necessary to calculate their inductances and/or to optimize their layouts. In this effect we create a software program, named CIBSOC (Spiral Inductors Inductance Calculation and Layout Optimization). The program is dedicated to calculate dc inductances and to optimize layouts for spiral inductors. We use a wide range of inductors in the applications made with our program. We compare the results of our applications with the measurements results existing in the literature and also with the results that we have obtained using a commercial field solver in order to validate our program. Our program is accurate enough, has a very friendly interface, is very easy to use and it calculates the problems in a very short running time compared with other similar programs. Since spiral inductors tolerance is generally on the order of several percent, a more accurate program is not needed in practice. The program is very useful for the spiral inductors design, because it calculates the inductance of spiral inductors with a very good accuracy. It is also useful for the spiral inductors optimization, because it affords optimal solutions for spiral inductor layouts in terms of the technological limitations and/or of the users’ needs.

1. Introduction

The passive components parameters extraction from radio frequency integrated circuits such as inductance, capacitance and resistance extraction are research topics of great interest and also very provocative. This fact is motivate by the continual technological progress thanks to it is now possible to implement integrated circuit at microns dimensions. The minimization of the integrated circuit dimensions at this extreme level lead in an implicit way to the significant rise of parameters extraction importance. These parameters must be calculated with a very good accuracy. We focus on inductance calculation. The inductance value extraction was and is intense studied in the literature. At this moment exists many expressions and methods used for integrated circuits inductance extraction [1]-[5], but as is mentioned in the literature, there are limits in their application.

2. CIBSOC Software Program

To design and to optimize the spiral inductors from integrated circuits is first necessary to find the exact parameters values, such as inductance value. So the fast and accurate inductance extractions become more and more important for design, optimization and design verification of the spiral inductors and for their performances improvement. The exact inductance calculation for spiral inductors; the spiral inductors optimization by finding their optimal layout for a given maximal inductance or for any given inductance value keeping a constant area for the inductor implementation in the integrated circuits are still needed to improve the spiral inductors performances. To this aim we implement a software program that allow fast and accurate inductance calculation and spiral inductor layout optimization. The program is composed of four modules. The first and the second one are create to calculate the spiral inductor inductance. The third and the fourth one are created to optimize the spiral inductor layout.

3. Applications in CIBSOC Program

We create a set of spiral inductors and we implement them in our program to find theirs inductances and to optimize theirs layouts. We present in this paper only the spiral inductors with square shape, even if the program allows also the calculation for hexagonal, octagonal and circular shapes of spiral inductors. We use CIBSOC program to calculate the total inductance for each of the square spiral inductor that we create and to optimize theirs layouts. All the dimensions used in the paper are in [μm] and the inductance values in [nH].
4. Comparison with Measurements

We calculate the inductance for some square spiral inductors that exist in the literature with measurements results (Table I) and we compare these results with the results obtained with our program. We demonstrate the accuracy of our CIBSOC program results.

Table I
Comparison of our results with measurements results

<table>
<thead>
<tr>
<th>N (turn)</th>
<th>Ref. (μm)</th>
<th>w (μm)</th>
<th>s (μm)</th>
<th>t (μm)</th>
<th>Lm (nH)</th>
<th>LCIBSOC (nH)</th>
<th>ε (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.75</td>
<td>19</td>
<td>279</td>
<td>18.3</td>
<td>1.9</td>
<td>0.9</td>
<td>3.1</td>
<td>3.009</td>
</tr>
<tr>
<td>2.50</td>
<td>21</td>
<td>46</td>
<td>18.8</td>
<td>1.8</td>
<td>0.8</td>
<td>12.6</td>
<td>11.977</td>
</tr>
<tr>
<td>4.50</td>
<td>37</td>
<td>100</td>
<td>19.6</td>
<td>1.8</td>
<td>0.8</td>
<td>18.4</td>
<td>17.953</td>
</tr>
<tr>
<td>5.00</td>
<td>32</td>
<td>85</td>
<td>18.3</td>
<td>1.9</td>
<td>0.9</td>
<td>12.4</td>
<td>11.987</td>
</tr>
<tr>
<td>7.50</td>
<td>32</td>
<td>100</td>
<td>19.6</td>
<td>1.8</td>
<td>0.8</td>
<td>18.2</td>
<td>17.842</td>
</tr>
<tr>
<td>10.00</td>
<td>32</td>
<td>153</td>
<td>18.3</td>
<td>1.9</td>
<td>0.9</td>
<td>3.1</td>
<td>3.055</td>
</tr>
<tr>
<td>12.50</td>
<td>32</td>
<td>153</td>
<td>18.3</td>
<td>1.9</td>
<td>0.9</td>
<td>3.1</td>
<td>3.055</td>
</tr>
<tr>
<td>15.00</td>
<td>32</td>
<td>153</td>
<td>18.3</td>
<td>1.9</td>
<td>0.9</td>
<td>3.1</td>
<td>3.055</td>
</tr>
</tbody>
</table>

5. Comparison with Commercial Field Solver

To validate our CIBSOC program we consider a very good opportunity to use a demo version of a commercial field solver dedicate to the parameters extraction from different types of complex integrated circuits. We implement in this program a wide range of square spiral inductors starting with the one that we create. The results of inductance variation in terms of the number of turns are presented in Table II.

Table II
Comparison of Results. Inductance vs. number of turns.

<table>
<thead>
<tr>
<th>Number of turns</th>
<th>LCIBSOC (nH)</th>
<th>L commercial program (nH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.808</td>
<td>1.7309</td>
</tr>
<tr>
<td>2</td>
<td>5.582</td>
<td>5.4228</td>
</tr>
<tr>
<td>3</td>
<td>10.527</td>
<td>10.286</td>
</tr>
<tr>
<td>4</td>
<td>16.15</td>
<td>15.833</td>
</tr>
<tr>
<td>6</td>
<td>28.081</td>
<td>27.637</td>
</tr>
<tr>
<td>8</td>
<td>39.347</td>
<td>38.794</td>
</tr>
<tr>
<td>12</td>
<td>55.315</td>
<td>54.704</td>
</tr>
<tr>
<td>16</td>
<td>60.064</td>
<td>59.646</td>
</tr>
</tbody>
</table>

The inductance variation in terms of the number of turns is plotted in Fig. 1. We observe close agreement between the results. With dotted line are plot the results obtained with our CIBSOC program, and with continuous line the results obtained with the commercial program.

6. Conclusions

The main aim of this paper was to present the inductance calculation and layout optimization for spiral inductors CIBSOC software program implemented by the authors. The program validation was done by comparison of the results obtained with our CIBSOC program, with the measurements results taken form literature and respectively with the results obtained by modeling the square spiral inductors also with a commercial field solver create especially for parameters extraction. Analyzing the results obtain on these three different ways we ascertain the results similitude, the small errors that prove the accuracy of our program. We consider our program very useful for design and for optimization of spiral inductors. It is easy to use and the running times are small compared with other similar programs. We want to extent our program also for ac parameters calculation, at high frequency.

References

Circuit Modelling, Simulation and Realization of the new Sundarapandian-Pehlivan Chaotic System

İhsan Pehlivan¹, İsmail Koyuncu², Vaidyanathan Sundarapandian³, Yılmaz Uyaroglu⁴

¹Electronics and Computer Education Department, Sakarya University, 54187, Esentepe Campus, Sakarya, Turkey, ipehlivan@sakarya.edu.tr
²Department of Control and Automation, Duzce, Vocational High School, Duzce University, Uzun Mustafa Mah. 81010, Duzce, Turkey, ismailkoyuncu@duzce.edu.tr
³Research and Development Centre, Vel Tech Dr. RR & Dr. SR Technical University, Avadi, Chennai-600 062, Tamil Nadu, India, sundarvtu@gmail.com
⁴Sakarya University, Eng. Faculty, Electrical Electronics Engineering Department, 54187, Esentepe Campus, Sakarya, Turkey, uyaroglu@sakarya.edu.tr

Summary

Sundarapandian and Pehlivan discovered a novel chaotic attractor. Basic dynamical properties of the new attractor system were analyzed by means of equilibrium points, eigenvalue structures, Lyapunov exponents and parameters regions [1]. This paper introduces the electronic circuit modelling, simulation and realization of the newly discovered chaotic attractor. Our investigation was completed using a combination of theoretical analysis, simulations and real experimental implementation. To implement as electronics of this new chaotic system is very easy due to having zero initial conditions.

1 Introduction

The Lorenz system displays very complex dynamical behaviour, especially the well-known two-scroll butterfly-shaped chaotic attractor [2]. Chen constructed another chaotic system [3], which is, nevertheless, not topologically equivalent to the Lorenz’s system [3]-[4]. The Chen’s system is dual to the Lorenz system and similarly has a simple structure [4]. Lü and Chen found the critical chaotic system [5], which represents the transition between the Lorenz and Chen attractors. Recently, Yang et al. [6] and Pehlivan et al. [7] introduced and analyzed the new 3D chaotic systems with six terms including only two quadratic terms in a form very similar to the Lorenz, Chen, Lü and Yang-Chen systems, but they have two very different fixed points: two stable node-foci.

There has been increasing interest in exploiting chaotic dynamics in engineering applications, where some attention has been focused on effectively creating chaos via simple physical systems, such as electronic circuits [8-12].

Motivated by such previous work Sundarapandian and Pehlivan discovered a novel chaotic attractor [1].

In this paper, Section 1 introduces the Sundarapandian chaotic system. Section 2 presents the electronic circuit modelling and OrCad-PSpice® simulation results. The real circuit implementation oscilloscope outputs are given in Section 3. Finally, conclusions and discussions are given.

2 Circuit Modelling of the Chaotic System

The simple electronic circuit is modelled that can be used to study chaotic phenomena. The circuit employs simple electronic elements such as resistors, and operational amplifiers, and is easy to construct.

Figure 1 and 2 show Orcad-PSpice simulation result and circuit schematic of the new chaotic circuit. In this simulation, parameters and initial conditions are taken as $a=1.5$, $b=0.4$, $c=0.4$, $x_1(0)=0$, $x_2(0)=0$, $x_3(0)=0.1$ respectively.

![Figure 1](image1.png)

Fig. 1. Pspice Simulation Result of the New Chaotic Circuit (xz-attractor)
3 Electronic Circuit Design and Implementation of The New Attractor

Figure 3 shows oscilloscope outputs of the real circuit implementation.

References

Acknowledgement

This work was supported by the Sakarya University Scientific Research Projects Commission Presidency (No. 2010-01-00-002).
Grating profile optimization for reflection 1st order Littrow mounting

Andrey A. Petukhov1, Michael K. Trubetskov2, and Alexander N. Bogolyubov1

1 Moscow State University, Faculty of Physics, Moscow, Russia petukhov@physics.msu.ru, bogan7@yandex.ru
2 Moscow State University, Research Computing Center, Moscow, Russia trub@srcc.msu.ru

Summary. One-dimensional multilayer reflection gratings with different groove shapes are considered and optimized for maximum diffraction efficiency in the first order in Littrow conditions. A rigorous formulation for the design optimization problem based on merit function minimization is presented. Nelder-Mead (simplex) method is applied for minimizing the merit function. At each step the direct problem is solved by means of a combination of the incomplete Galerkin’s method and matrix techniques.

1 Introduction

Due to its selective special properties and capability of spatial decomposition of waves with different frequencies as well as spatial redistribution of the wave energy, diffraction gratings are extensively applied in modern optical devices, especially in laser systems [1]. Diffraction gratings are widely applied in semiconductor diode lasers for wavelength stabilization as mirrors in external resonators [2] as well as for laser tuning [3]. Another application of diffraction gratings in laser physics is connected with pulse compression in ultrashort high-power lasers that are based on chirped pulse amplifications [4]. In all cases it is crucial to use gratings which are capable of reflecting the incident light at a desired frequency (or wavelength) into one diffraction order with an efficiency as close to 100% as possible and special grating configurations are used, such as Littrow configuration (i.e. the geometry in which the light of a specific wavelength diffracted from a grating into a given diffraction order travels back along the direction of the incident light [1]). In such systems the gratings are traditionally covered with metallic films, or purely metallic gratings are implemented. Being fragile the gratings can be easily damaged, especially by high-intensity laser pulses [5]. To minimize the damage and to ensure reflection into one diffraction order it is desirable to implement entirely dielectric diffraction gratings [6, 7]. This gives rise to a specific problem of grating design and optimization. This problem, with respect to the applications described above has been widely discussed in the literature. However in many cases no optimization problem is solved but only some heuristic considerations are presented. Only several papers (for example [6]) contain rigorous formulation of the design problem in terms of a merit function which is minimized for obtaining the optimized structure. Thus it is very important to provide a rigorous formulation for the grating design problem and apply rigorous non-heuristic methods for obtaining the solution.

2 Problem statement

Within this paper we consider entirely dielectric one-dimensional multilayer reflection gratings with different groove shapes such as binary (Fig. 1) and triangular (Fig. 2) gratings. As the dielectric grating itself provides only good redistribution of incident wave energy between several diffraction orders, a multilayer dielectric mirror should be used for ensuring good reflectance (schematically presented as green and light green layers in Figs. 1, 2). The grating is placed on the top of the multilayer dielectric mirror deposited on a substrate (represented as a light brown area in Figs. 1, 2). The wave is considered to be incident (direction $\langle i \rangle$) at a grating at some given angle θ. Our goal is to optimize the grating parameters via maximizing the diffraction into the first order for a given wavelength in case of first order Littrow conditions, i.e for the case when the $\langle i \rangle$ and $\langle 1 \rangle$ directions in Figs. 1, 2 are coincident.

\includegraphics[width=0.5\textwidth]{binary_grating.png}

Fig. 1. Binary multilayer grating

3 Optimization algorithm

In each case (binary and triangular gratings) the multilayer grating structure is parametrized. A binary grating is determined by its period, groove depth and...
Fig. 2. Multilayer grating with triangular grooves

groove width, a triangular grating is determined by its period and blaze angle. There can be some restrictions on these parameters, apart from trivial physical ones (non-negative values of the parameters), resulting from the following requirements:

- only two diffraction orders (0, 1) should be propagating in both the incident medium and the substrate, all higher orders being evanescent;
- there should be no waveguide modes in the multilayer stack at a given wavelength and at a given angle of incidence.[6]

We provide a grating optimization algorithm based on a merit function minimization (or maximization) in terms of the variable grating parameters given above under the described constraints. The merit function represents the first order diffraction efficiency and should be maximized. Another formulation is also used, such as minimizing of the zero-order diffraction efficiency in case of only two propagating orders (0, 1). The multilayer mirror parameters are optimized independently, providing almost 100% reflectance for a given wavelength and for a given angle of incidence and as a starting point a quarter-wave stack is taken. The merit function minimization algorithm is based on the Nelder-Mead (simplex) optimization.[8] At each step the merit function is evaluated by obtaining the solution of a full-vectorial diffraction problem for Maxwell equations, which is obtained by means of a combination of the incomplete Galerkin’s method[9][10] and matrix techniques such as transfer matrix and scattering matrix methods.[11] These methods provide efficient solution of the problem of wave diffraction on a multilayer grating.

Within this paper we provide multilayer diffraction grating optimization for maximizing first-order reflection in Littrow conditions. Different polarization states (TE and TM polarizations) are considered. The results for gratings with different groove shapes, such as binary and triangular gratings, are obtained and compared with each other.

References

Bulk and Interface Balance Equations for Organic Solar Cell Simulation

Matteo Porro1,2, Carlo de Falco1,3, Riccardo Sacco1, and Maurizio Verri1

1 Dipartimento di Matematica “F. Brioschi”, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
2 Center for Nano Science and Technology @Polimi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy
3 MOX Modeling and Scientific Computing
carlo.defalco@polimi.it, carlo.defalco@polimi.it, carlo.defalco@polimi.it, riccardo.sacco@polimi.it, maurizio.verri@polimi.it

Summary. In this communication, we present a computational model for heterojunction Organic Solar Cells (OSCs) consisting of a system of semilinear PDEs and ODEs. The mathematical model is discussed, focusing on the transmission conditions at material interfaces, together with the numerical method used for its solution. Steady-state and transient simulations are performed on realistic devices with various interface morphologies.

1 Introduction and Motivation

In the design of efficient OSCs the impact of material interface morphology on performance is currently considered to be of paramount importance. For this reason, material scientists are putting much of their research effort into techniques for controlling interfaces down to the nanoscale, for example by studying materials that have the ability to self-assemble into ordered nanostructures during the deposition process. For the same reason, computational models that allow to estimate device performance carefully accounting for the material interface geometry and the phenomena occurring on it are in high demand. Previous approaches in this direction can be found in \cite{1} (for biplanar devices) and \cite{7}. In this communication we present our work aimed at extending the model of \cite{1} to treat arbitrary multidimensional morphologies.

2 Mathematical Model

Let Ω be an open subset of \mathbb{R}^d, $d = 1, 2, 3$, representing the geometrical model of an OSC and \mathbf{v} be the unit outward normal vector over the boundary $\partial \Omega$. The device structure is divided into two open disjoint subregions, Ω_n (acceptor) and Ω_p (donor), separated by a regular surface Γ on which \mathbf{v}_Γ is the unit normal vector oriented from Ω_p into Ω_n. The cell electrodes, cathode and anode, are denoted as Γ_C and Γ_A, respectively (see Fig. 1 for the 2D case). Let e, n and p denote the volumetric densities of excitons, electrons and holes in the cell, respectively, P be the areal density of polaron pairs and φ be the electric potential. For any function $f : \Omega \to \mathbb{R}$, let $[f] := f_n - f_p$, f_n and f_p being the traces of f on Γ from Ω_n and Ω_p, respectively. Excitation phenomena occurring in the bulk are described by the parabolic problem:

\[
\begin{align*}
\frac{\partial e}{\partial t} - \nabla \cdot (D_e \nabla e) &= Q - \frac{e}{\tau_e} & \text{in } \Omega \setminus \Gamma, \\
\left[e \right] &= 0, & \text{on } \Gamma, \\
\left[-\mathbf{v}_\Gamma \cdot D_e \nabla e \right] &= \eta_{rec} P - \frac{2H}{\tau_{diss}} e & \text{on } \Gamma, \\
\frac{\partial}{\partial t} e(x,0) &= 0, & \forall x \in \Omega.
\end{align*}
\]

(1a)

Dissociation/recombination of excitons, electrons and holes into polaron pairs at the material interface is described by the ODE:

\[
\begin{align*}
\frac{\partial P}{\partial t} &= \frac{2H}{\tau_{diss}} e + 2H \gamma_p P - \left(k_{diss} + k_{rec} \right) P & \text{on } \Gamma, \\
P(x,0) &= 0, & \forall x \in \Gamma.
\end{align*}
\]

(1b)

Transport of photogenerated electrons in the acceptor domain Ω_n is described by the parabolic problem:

\[
\begin{align*}
\frac{\partial n}{\partial t} + \nabla \cdot \mathbf{J}_n &= 0 & \text{in } \Omega_n, \\
\left[\mathbf{J}_n \right] &= -D_n \nabla n + \mu_n e \nabla \varphi & \text{in } \Omega_n, \\
-\mathbf{v}_\Gamma \cdot \mathbf{J}_n &= -k_{diss} P + 2H \gamma_p P & \text{on } \Gamma, \\
-k_n \mathbf{v}_\Gamma \cdot \mathbf{J}_n + \alpha_n n &= \beta_n & \text{on } \Gamma_C, \\
n(x,0) &= 0, & \forall x \in \Omega.
\end{align*}
\]

(1c)

A parabolic problem completely similar to (1b) describes hole transport in the donor domain Ω_p. The dependence of the electric potential and field on the space charge density in the cell is described by the Poisson equation:

\[
\nabla \cdot \left[\varepsilon \left(\nabla \varphi \right) \right] = \sum_{\Gamma} \left(\left[e \right] + \left[\mathbf{j}_n \right] + \left[\mathbf{j}_p \right] \right) & \text{in } \Omega \setminus \Gamma, \\
\left[\mathbf{j}_n \right] &= -D_n \nabla n + \mu_n e \nabla \varphi & \text{on } \Gamma, \\
\left[\mathbf{j}_p \right] &= -k_{diss} P + 2H \gamma_p P & \text{on } \Gamma.
\]
\[
\begin{align*}
\nabla \cdot (-\varepsilon \nabla \phi) &= -qn & \text{in } \Omega_e, \\
\nabla \cdot (-\varepsilon \nabla \phi) &= +q \rho & \text{in } \Omega_p, \\
\phi &= 0 & \text{on } \Gamma_\text{H}, \\
\phi &= V_{\text{appl}} + V_{\text{bi}} & \text{on } \Gamma_i.
\end{align*}
\]

(1d)

A list of the model parameters with their corresponding physical meaning is reported in Table 1. The PDE/ODE model (1) has been introduced in [2] and represents a multi-dimensional generalization of the 1D formulation proposed in [1]. System (1d) is completed by periodic boundary conditions on $\Gamma_e \cup \Gamma_p$. We notice that the dissociation and recombination processes occurring at the donor-acceptor interface Γ are dealt with by the nonlinear transmission conditions (1ai) and (1ci), whose dependence on the local electric field magnitude and orientation is contained in the polaron dissociation rate constant κ_{diss} [2].

![Table 1. Model parameters.](image)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_i, D_i</td>
<td>Mobility and diffusivity of species i, $i = e, n, p$</td>
</tr>
<tr>
<td>Q</td>
<td>Exciton generation rate</td>
</tr>
<tr>
<td>τ_e, τ_{diss}</td>
<td>Exciton decay and dissociation times</td>
</tr>
<tr>
<td>k_{rec}, k_{diss}</td>
<td>Polaron recombination and dissociation rates</td>
</tr>
<tr>
<td>γ</td>
<td>Electron-hole recombination rate constant</td>
</tr>
<tr>
<td>η</td>
<td>Singlet exciton fraction</td>
</tr>
<tr>
<td>H</td>
<td>Active layer thickness</td>
</tr>
</tbody>
</table>

3 Algorithms and Simulation Results

System linearization (by a quasi-Newton method) and approximation are carried out by adapting the approach used in [3]. Time advancing is treated using Rothe’s method and adaptive BDF formulas, while the exponentially fitted Galerkin finite element method studied in [5] is used for spatial discretization. The interface conditions at the donor-acceptor interface are taken care of by means of the substructuring techniques described in [6].

Model (1) is here validated in both stationary and transient regimes. In a first set of simulations, we study the finger-shaped heterostructure considered in [7]. Fig. 2 shows the output current-voltage characteristics predicted by our model, which is in excellent agreement with that computed in [7]. In a second set of simulations, we test the ability of the model to describe the behaviour of a cell characterized by a complex interface morphology. Fig. 3 shows the free carrier densities computed for a “curly-shaped” geometry at short-circuit working conditions. In a third set of simulations, we test the model in the time-dependent case. Fig. 4 shows the cell current response under two different biasing conditions for a planar device geometry similar to that studied in [1]. Ongoing activity is devoted to the investigation of the working principles of the light-harvesting device described in [4].

![Fig. 2. Current-voltage characteristics for the finger-shaped heterostructure investigated in [7].](image)

![Fig. 3. Free carrier densities for a device with complex morphology.](image)

![Fig. 4. Contact current density transient at two different voltage regimes.](image)

References

Modeling and Analysis of the Performance Improvement Techniques for EMI Filters

Adina Racasan¹, Calin Munteanu¹, Vasile Topa¹, Dan Micu¹, Claudia Pacurar¹, Ema Adam²

¹Departament of Electrotechnics, The Technical University of Cluj-Napoca, Baritiu 26-28, 400027 Cluj – Napoca, Romania, Adina.Racasan@et.utcluj.ro, Calin.Munteanu@et.utcluj.ro, Vasile.Topa@et.utcluj.ro, Dan.Micu@et.utcluj.ro, Claudia.Pacurar@et.utcluj.ro

²Department of Foreign Languages and Communication, The Technical University of Cluj-Napoca, Baritiu 26-28, 400027 Cluj – Napoca, Romania, Ema.Adam@lang.utcluj.ro

Summary Improving the characteristics of a filter presupposes two major directions of action: the first direction refers to the increase of attenuation (by means of the increase of losses) in high frequency, while the second direction refers to the suppression of the parasitic effects in the constitutive devices. Thus, in this light, the paper presents the authors’ contribution to the two major directions of actions mentioned above; in the first part, techniques of loss increase are presented, while in the second part techniques of minimizing the parallel equivalent capacity are shown, techniques proposed by the authors. In part three of the paper these techniques are applied simultaneously to an EMI filter made by use of planary magnetic technology in order to study its performance through 2D and 3D numerical modelling. The final conclusions will close the present paper.

1 Introduction

The main technological challenge for the integrated EMI filters, as it appears from the speciality literature, is that of improving its performance for high frequencies by reducing the equivalent parallel capacity (EPC) and the equivalent series inductance (ESL) of the integrated capacitor coils, by the increase of losses at high frequency, respectively [1], [2]. The fundamental element of any integrated magnetic planar device is represented by its LC integrated structure. For the construction of the EMI filters, an LC integrated structure with three coils per layer has been chosen, an attractive structure which is also often mentioned in the literature for the manufacturing of different planary integrated magnetic devices; it is presented in Fig. 1.

2 Techniques for improving the performance of the integrated EMI filters

In order to achieve the integrated EMI filters big losses at high frequency are desired, that is small losses at low frequencies, respectively. Aiming at that, the authors propose the technique of nickel coating conductors, a technique to be described in detail in the final work.

As far as the parallel equivalent capacity is concerned, since great geometrical complexity structures are involved, it cannot be defined by means of direct calculus relationships nor can it be localized in a certain device, since it is practically distributed within the space between the coil windings constituting the filter. A new technique for reducing the parallel equivalent capacity is proposed within the paper, that is applying a geometrical staggering among the coil windings. The structure of the optimum placing of the staggered coiling constitutes the subject of a study for optimal planning with specific numeric optimization algorithms created by the authors. These techniques of increasing loss at high frequency and of minimizing the EPC respectively are applied in the case of EMI integrated filters in order to improve their performance. The equivalent principle scheme for an EMI filter achieved by means of planary magnetic technology is given in Fig. 2 [3].
In order to highlight the performance introduced by means of applying the techniques proposed by the authors, a comparative study has been carried out, having as a starting point an initial structure achieved in the classical variant, the so called "original structure" and an "optimized structure" in the aforementioned sense, respectively. The two structures are presented in Fig. 3, the constituting elements being mentioned alongside their functional role within the EMI filter.

Comparing the capacity matrixes obtained following the numeric modeling of the two proposed filters, it can be noticed that the parasitic capacity corresponding to the CM1 coil decreases from 219.4 pF, the value obtained in the matrix corresponding to the EMI filter based on the original structure, to 102.32 pF in the case of the EMI filter based on the optimally staggered coil. The parasitic capacity corresponding to the CM2 coil decreases from 219.16 pF to 101.61 pF respectively.

The impedance variation with frequency at the inlet of the closed filter for a 50 Ω charge in the case of the two proposed structures is shown in Fig. 4.

3 Conclusions
Following the analysis of the results obtained which have been detailed in the present paper, it can be stated that the techniques proposed by the authors for the improvement of the EMI filter performance prove to be efficient. Thus, the EMI filters which have applied these techniques have a parallel equivalent capacity reduced to approximately 47% of the initial value while the HF losses are increased with approximately 32% with respect to the initial value respectively.

Acknowledgement This paper was supported by the TE 253/2010 CNCSIS project – “Modeling, Prediction and Design Solutions, with Maximum Effectiveness, for Reducing the Impact of Stray Currents on Underground Metallic Gas Pipelines”, No. 34/2010.

References
Analyzing Distortion Contributions in a Complex Device Model

Timo Rahkonen, Janne P. Aikio

Department of Electrical Engineering, Electronics Laboratory, P.O. Box 4500 90014 University of Oulu, Finland

Summary. This paper studies how distortion contribution analysis is affected by the internal structure of the device models. It is shown that to keep the distortion contributions tractable and physically meaningful we need to lump the contributions so that they resemble the contributions of a classical transistor pi-model. The technical challenges related to this are also discussed.

1 Introduction

Until now, distortion contributions have been analyzed mostly fully analytically, using symbolic Volterra analysis and simplified schematics[1,2]. The authors have proposed a fully numerical distortion contribution analysis method called Volterra-on-Harmonic-Balance (VoHB) [3,4], that both builds the polynomial models needed for Volterra analysis, and propagates the distortion contributions to any chosen node. VoHB proceeds in the following steps: HB is run to obtain voltage and current spectra in all nodes and branches. Using these, a polynomial model is built for each non-linear VCCS and VCQS. Then, a linearized network is built (using the linear terms of the fitted polynomials), and - using the direct current method - the response of the injected distortion currents is calculated in a given node.

VoHB operates at VCCS level and does not need modifications into the device models. However, the output contains the response of all non-linear VCCS and VCQS found inside the device model, so that in addition to the dominant sources it includes reverse biased pn junctions, or parasitic devices of BJTs, for example. Many of these insignificant terms can be masked away simply based on their low magnitude, but another problem has emerged.

Many new device models are distributed as an executable Verilog-A code, which is automatically converted into a model structure. The syntax of verilog-A makes it possible to write models whose structure differs notably from traditional device models and is not necessarily optimal for Spice-like simulators, or distortion contribution analysis in particular. For example, Fig. 1 shows a rather typical example where the transistor’s Ids source is split into two by generating an intermediate node in the middle of the source. From terminal current point of view this modification is absolutely ok, but it scrambles the distortion contribution analysis. VoHB calculates the contributions of all the sources, and adding an equivalent (and equal) distortion current sources parallel to Ids and Idsx as in Fig 2a generates two large distortion contributions that cancel each other. The net current sum for example in the collector terminal is still correct, but the physical meaning and intuition is lost: the names of the sources do not mean anything to the engineer, any more, and the mutually cancelling contributions have no physical meaning.

For the above reasons, there is a clear interest to reduce the entire internal structure of a complex device model (Fig. 2a) into something resembling a classic transistor pi-model (Fig. 1a) to keep the distortion contribution analysis results tractable. The idea is to lump all the input and output related non-linear currents together, as shown in Fig.2b. Now the designer can again clearly recognize the effects of input and output related conductive or capacitive non-linearities.

Building the equivalent distortion current model is straightforward. HB simulation is run, and terminal distortion current spectra Id, Is and Ig are recorded. Then equivalent current sources are fitted so that the terminal distortion currents are correctly modeled by these imaginary distortion sources. These sources are fitted using the spectra of terminal currents and intrinsic node voltages.

Even in a lumped model the terminal distortion currents consist of distortion generated in several sources. For example, the current in the drain terminal comes from the gm-element Ids(vgs,vds), and drain charge Qds(vgs,vds), both of which are controlled by intrinsic vgs and vds voltages. Moreover, the current from Qds is proportional to the tone frequency Ω, while Ids has a transit delay τ that rotates the phases of the tones by \(\exp(-jωτ) \). Hence, \(i_d \) would be described as

\[
i_d = i_{gm} + i_{qds} = \text{diag}(e^{-jΩτ}) \cdot gmpoly(vgs,vds) + \text{diag}(jΩ) \cdot qdspoly(vgs,vds)
\]

(1)
where \(\text{diag}() \) is a diagonal matrix, \(\Omega \) is the frequency of a given tone, and \(\text{gmpoly}() \) and \(\text{qdspoly}() \) are model function matrices. In the model function matrices each row corresponds to one frequency in the spectrum, and each column corresponds to one \(\text{vgs}^* \text{vds}^j \) product term in the polynomial model.

Similar equation can be written for the gate current \(i_g \):

\[
\begin{align*}
 i_g &= g_{gpi} + i_{gqs} \\
 &= \text{gmpoly}(vgs, vds) + \text{diag}(j\Omega) \cdot \text{qdspoly}(vgs, vds)
\end{align*}
\]

where \(g_{gpi} \) corresponds to the possible conductive part of the input current (needed in BJTs) and \(\text{qdspoly}() \) models the current caused by the input charge.

Solving the polynomial coefficients from (1) has some technical challenges. Currently, VoHB has \(i_{gm} \) and \(i_{qds} \) available separately, and can fit the two polynomials independently. This keeps the number of unknowns in some bounds. In a lumped model we must fit (1) simultaneously, which increases the number of unknown coefficients. As we can fit only as many coefficients as there are equations this approach may not be possible using a 1-tone spectrum, but we must use 2- or 3-tone excitations. The \(j\Omega \) emphasis also means that the effect of capacitive lower harmonics is attenuated, and more easily buried underneath the effect of conductive non-linearities. Second, the frequency response \(\text{diag}(j\Omega) \) of capacitive current is known a priori, but the transit delay \(\tau \) of the \(\text{ids} \) source is not necessarily known, if we want to keep the analysis independent of the device models. Hence, \(\tau \) needs to be found by iterating (1). Third, the above only gives the equivalent polynomials that can be used to calculate the nonlinear distortion currents \(i_{NL} \). Addition to this, we need to build the linearized circuit model to propagate the currents to a given node. For this reason we also need to find linear models for all \(\text{VCCS} \) elements in the original model.

As an example, we took the MET model [5] of Freescale's LDMOS power transistor MRF21030. Its output drain current consists of currents from three sources: the gm source \(\text{Ids}(Vgs,Vds) \), drain charge \(\text{Qds}(Vds) \), and gate-drain charge \(\text{Qgd}(Vgd) \). \(\text{Ids} \) strongly dominates the total drain current, and \(\text{Qgd} \) is insignificant. In a simple example, we tried to model total drain current \(\text{Id} \) as a sum of \(\text{Ids} + \text{IQds} \).

\(\text{Ids} \) strongly dominates the total drain current, and \(\text{Qgd} \) is insignificant. In a simple example, we tried to model total drain current \(\text{Id} \) as a sum of \(\text{Ids} + \text{IQds} \). The combined model matrix is very badly ill-conditioned (cond \(\sim 3e13 \)), and \(\text{Qds} \) fits poorly. Much better results was obtained by iterating a couple of times in a loop, where \(\text{Ids} \) was first estimated, and substrated from \(\text{Id} \) before fitting \(\text{IQds} \). This reduces the order of the fitted system and improves especially the fitting of the capacitive currents that are buried underneath the dominating \(\text{Ids} \) current. The condition number of the \(\text{Ids} \) fitting matrix drops to \(\sim 1e7 \), which is mostly set by the heavy correlation between \(Vgs \) and \(Vds \) signals.

\[i_g = g_{gpi} + i_{gqs} = \text{gmpoly}(vgs, vds) + \text{diag}(j\Omega) \cdot \text{qdspoly}(vgs, vds) \]

\[i_{gqs} = \text{qdspoly}(vgs, vds) \]

where \(g_{gpi} \) corresponds to the possible conductive part of the input current (needed in BJTs) and \(\text{qdspoly}() \) models the current caused by the input charge.

Solving the polynomial coefficients from (1) has some technical challenges. Currently, VoHB has \(i_{gm} \) and \(i_{qds} \) available separately, and can fit the two polynomials independently. This keeps the number of unknowns in some bounds. In a lumped model we must fit (1) simultaneously, which increases the number of unknown coefficients. As we can fit only as many coefficients as there are equations this approach may not be possible using a 1-tone spectrum, but we must use 2- or 3-tone excitations. The \(j\Omega \) emphasis also means that the effect of capacitive lower harmonics is attenuated, and more easily buried underneath the effect of conductive non-linearities. Second, the frequency response \(\text{diag}(j\Omega) \) of capacitive current is known a priori, but the transit delay \(\tau \) of the \(\text{ids} \) source is not necessarily known, if we want to keep the analysis independent of the device models. Hence, \(\tau \) needs to be found by iterating (1). Third, the above only gives the equivalent polynomials that can be used to calculate the nonlinear distortion currents \(i_{NL} \). Addition to this, we need to build the linearized circuit model to propagate the currents to a given node. For this reason we also need to find linear models for all \(\text{VCCS} \) elements in the original model.

As an example, we took the MET model [5] of Freescale’s LDMOS power transistor MRF21030. Its output drain current consists of currents from three sources: the gm source \(\text{Ids}(Vgs,Vds) \), drain charge \(\text{Qds}(Vds) \), and gate-drain charge \(\text{Qgd}(Vgd) \). \(\text{Ids} \) strongly dominates the total drain current, and \(\text{Qgd} \) is insignificant. In a simple example, we tried to model total drain current \(\text{Id} \) as a sum of \(\text{Ids} + \text{IQds} \). The combined model matrix is very badly ill-conditioned (cond \(\sim 3e13 \)), and \(\text{Qds} \) fits poorly. Much better results was obtained by iterating a couple of times in a loop, where \(\text{Ids} \) was first estimated, and substrated from \(\text{Id} \) before fitting \(\text{IQds} \). This reduces the order of the fitted system and improves especially the fitting of the capacitive currents that are buried underneath the dominating \(\text{Ids} \) current. The condition number of the \(\text{Ids} \) fitting matrix drops to \(\sim 1e7 \), which is mostly set by the heavy correlation between \(Vgs \) and \(Vds \) signals.

Fig. 1 a) Transistor pi-model, b) example structure that may result when automatically generated from a Verilog-A source.

Fig. 2 a) Distortion current sources next to each \(\text{VCCS} \), b) lumped distortion current sources.

Acknowledgement. This work is funded by the Academy of Finland

References

Coupling of FEM and Fourier-mode expansion by perfectly conducting gratings

Guanghui Hu¹ and Andreas Rathsfeld¹

Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, 10117 Berlin, Germany
Guanghui.Hu@wias-berlin.de, Andreas.Rathsfeld@wias-berlin.de

Summary. To simulate the diffraction of planar waves by periodic surface structures, Huber et al. [2] have proposed to combine a Fourier-mode expansion over the half space with a finite element approximation of the electric field close to the surface. We analyze a slight modification of this mortar method and discuss an application to an inverse problem in scatterometry. In particular, we present a shape derivative formula for the derivative with respect to geometry parameters.

1 Boundary Value Problem for Gratings

Suppose the space \(\mathbb{R}^3 \) is filled with two materials separated by an interface \(\Gamma \), which is a small perturbation of the \(x_3 = 0 \) plane and which is \(2\pi \)-periodic in the \(x_i \) directions for \(i = 1, 2 \). Furthermore, suppose the material below \(\Gamma \) is perfectly conducting and that in the domain \(\Omega \) above \(\Gamma \) is lossless. To compute the diffraction of a time-harmonic plane wave \(E^\text{in} \) incident on \(\Gamma \) from above, we have to solve

\[
\begin{align*}
\nabla \times \nabla \times E - k^2 E &= 0 & \text{on } \Omega, \\
v \times E &= 0 & \text{on } \Gamma, \\
E(x) - E^\text{in}(x) &= \sum_{n \in \mathbb{Z}^3} E_n e^{i \nu_n \cdot x} & \text{for } x_3 > b.
\end{align*}
\]

Here \(v \) is the unit normal vector on \(\Gamma \), \(b \) is a fixed \(x_3 \) coordinate greater than those of \(\Gamma \), and \(\nu_n \) are the vectors of the upward radiating (plane wave and evanescent) Fourier modes.

2 Mortar Method

It is natural, to approximate \(E \) for \(x_3 > b \) by \(E^\text{in} \) plus a Fourier-mode expansion \(E^+ \) like that on the right-hand side of (3). In the domain between the artificial surface \(I_b^- := \{ x \in \mathbb{R}^3 : x_3 = b \} \) and \(\Gamma \), an FE approximation with quasi-periodic edge elements is possible. Clearly, the FEM can be restricted to the cell of periodicity \(\Omega_b := \{ x \in \Omega : x_3 < b, 0 \leq x_l \leq 2\pi, l = 1, 2 \} \) and the mode expansion to the bounded upper domain \(\Omega_b^+ := \{ x \in \mathbb{R}^3 : b \leq x_3 \leq b + 1, 0 \leq x_l \leq 2\pi, l = 1, 2 \} \) or even to \(I_b^+ := \{ x \in I_b : 0 \leq x_3 \leq 2\pi, l = 1, 2 \} \). Following the idea of Huber et al. [2], we couple the two approximations by a mortar technique. More precisely, we replace the boundary value problem by the following variational equation

\[
a((E, E^+), (V, V^+)) = -a((0, E^\text{in}), (V, V^+)),
\]

required for all \(V \in H(\text{curl}, \Omega_b) \) and \(V^+ \in H(\text{curl}, \Omega_b^+) \), where the sesquilinear form \(a \) is defined as the sum of

\[
f_{\Omega_b}(\nabla \times E \cdot \nabla \times V + E \cdot \nabla V) - f_{I_b}(\nabla \times E^+ \cdot \nabla \times V + \nabla \times E^+ \cdot \nabla V^+) + f_{\Omega_b}(\nabla \times E^- \cdot \nabla \times V + \nabla \times E^- \cdot \nabla V^-)
\]

plus a certain sesquilinear form corresponding to a finite rank operator. We get (cf. [3])

Theorem 1. The operator corresponding to the variational equation is Fredholm of index zero. The solution of the sesquilinear form is equivalent to the boundary value problem [1].

Unfortunately, there are examples of gratings such that the solution of the boundary value problem is non-unique. However, the scattered (non-evanescent) plane wave modes are always unique (cf. [3]).

Using Theorem 1 the justification of a coupled Fourier-mode-FE method should be possible (compare [1]). Simply, the \(E \) and \(V \) are to be replaced by edge finite elements and the \(E^+ \) and \(V^+ \) by truncated Fourier-mode expansions. Of course, the variational form is to be modified slightly. Frequently, in practical computations, only a small number of the Rayleigh coefficients \(E_n \) (cf. [3]) differ essentially from zero. Thus only a few terms in the Fourier-mode expansions are needed.

3 Inverse Problem in Scatterometry

To evaluation the fabrication process of lithographic masks, simple periodic or biperiodic structures must be measured. Using scatterometric techniques, the corresponding part of the surface is illuminated by a ray of laser light. The efficiencies (intensities) of the scattered plane wave modes are measured. Finally, a biperiodic structure is sought, the efficiencies of which coincide with the measured data, i.e., an inverse problem is to be solved.

Though this problem is severely ill-posed, we are looking for small deviations of the surface structure.
from the fabrication standard, i.e., for surfaces described by a small number of geometry parameters. The reduction to these parameters is like a regularization of the inverse problem, and the determination of the parameters with high accuracy should be possible. Note that we do not discuss the effect of modeling errors or random perturbations.

The numerical solution of the inverse problem can be realized minimizing a functional $\mathcal{F}(\mathbf{E})$, where $\mathcal{F}(\mathbf{E})$ is some measure for the deviation of the measured efficiencies and the efficiencies of the scattered field \mathbf{E} corresponding to a grating structure with given parameters. Although the gratings are not perfectly conducting anymore, the scattered field \mathbf{E} can be computed by an FEM similar to that of Sect. 3. Optimization schemes like the Gauß-Newton method or the Levenberg-Marquardt algorithm can be applied. However these local optimization routines require the Jacobian of the operator, mapping the set of geometry parameters to the vector of efficiency values. In other words, we need formulas for the derivatives of \mathbf{E} with respect to the geometry parameters.

4 Shape Derivative

In the case of periodic gratings, i.e., for the two-dimensional Helmholtz equation, the classical methods for shape calculus apply. Unfortunately, for the time-harmonic Maxwell equation (1), an analogous procedure is not possible. Indeed, the underlying energy space $H(\text{curl}, \Omega_b)$ is not invariant under the transformations corresponding to a change of the geometry parameter.

On the other hand, in our optical applications the magnetic permeability μ is constant. For this case, it is known that the magnetic vector \mathbf{H} is piecewise in the Sobolev space H^1. Using this fact, the shape calculus applies to the derivative of \mathbf{H}. Switching now from the magnetic vector to the electric field, we can derive a formula for the derivative w.r.t. a geometry parameter p (cf. [3])

$$\partial_p \mathcal{F}(\mathbf{E}) = \text{Re} \, a_1(E, E_{\text{adj}}).$$ \hspace{1cm} (4)

Here $a_1(E, F)$ is a special sesquilinear form depending on the L^2 functions E, F, $\nabla \times E$, and $\nabla \times F$. The field E in (4) is the actual electric solution of the time-harmonic Maxwell equation. The field E_{adj} is the solution of the adjoint equation. In other words, E_{adj} is the solution of an equation with the adjoint FEM matrix and with a right-hand side depending on the functional \mathcal{F}.

In a numerical experiment, we have implemented a version of (4) discretized by FEM. The numerical algorithm for the inverse problem mentioned in Sect. 3 including the shape derivative based on (4), converges well.

Acknowledgement. The first author gratefully acknowledges the support by the German Research Foundation (DFG) under Grant No. EL 584/1-2.

References

A new indicator to assess the quality of a Pareto approximation set applied to improve the optimization of a magnetic shield.

E. Dilettoso, S.A. Rizzo, N. Salerno

Dipartimento di Ingegneria Elettrica, Elettronica ed Informatica - Università di Catania, Catania 95125, Italy, {emanuele.dilettoso; santi.rizzo; nunzio.salerno}@dieei.unict.it

Summary Evaluating the performances of an optimization algorithm is more complex in the case of multi-objective optimization problems than single-objective ones. In the former case, the optimization aims to obtain a set of non-dominated solutions close to the Pareto-optimal front, well-distributed, maximally extended and full-filled. This paper presents a new quality indicator encompassing the aforementioned goals. The quality indicator is then used to select a suitable algorithm for the multi-objective optimization of a magnetic shield in an induction heating system.

1 Introduction

The optimization results provided by a multi-objective algorithm are, usually, a set of non-dominated solutions (called approximation set in the decision space and Pareto approximation front in the objective functions space).

The main goal of such algorithms is to provide an approximation set matching the Pareto-optimal set.

The notion of performance of an optimization algorithm involves the quality of the solutions that it is able to produce and the computational effort required to provide such solutions.

The definition of quality is a complex topic to deal with in the case of multi-objective optimization problems. A good optimization algorithm should [1]:
- minimize the distance from the Pareto approximation front to the Pareto-optimal front;
- obtain a good (usually uniform) distribution of the solutions found;
- maximize the extension of the Pareto approximation front, i.e., for each objective, a wide range of values should be covered by the non-dominated solutions;
- maximize the “density” of the Pareto approximation front, i.e. is desirable a high cardinality for the approximation set.

In literature, there are different methods that assign a quality indicator or a set of quality indicators that are a measure of the aforementioned goals and, usually, a combination of them is used in order to evaluate the goodness of a multi-objectives optimization algorithm [2].

In this paper, a new unary quality indicator, called Degree of Approximation (DOA), is presented. It takes into account all the goals listed before. DOA was then helpful for the choice of the optimization algorithm more suitable to perform the multi-objective optimization of a magnetic shield.

2 Degree of Approximation indicator

DOA is a distance-based unary quality indicator that also encompasses the distribution, the extension and the cardinality of a Pareto approximation front.

In detail, for a Pareto front approximation set A, DOA is computed as described in the following.

First, given a solution \(i\) belonging to the Pareto-optimal front (POF), the sub-set of A containing the solutions dominated by \(i\), \(D_{i,A}\), is determined. Hence, if the number of elements belonging to \(D_{i,A}\) is not null (\(|D_{i,A}| > 0\)), for each approximated solution \(a \in D_{i,A}\) is computed the Euclidean distance \(d_{f,i,a}\) (see Fig.2) between \(a\) and \(i\) as:

\[
d_{f,i,a} = \left(\sum_{k=1}^{n} \left(f_{k,a} - f_{k,i} \right)^2 \right)^{1/2}
\]

where \(n\) is the number of objective functions, \(f_{k,a}\) is the value of the \(k\)-th objective function of approximated solution \(a\), \(f_{k,i}\) is the value of the \(k\)-th objective function of optimal solution \(i\).

Then the parameter \(d_{i,a}\) is computed: it is the Euclidean distance between \(i\) and the nearest approximated solution belonging to \(D_{i,A}\):

\[
d_{i,a} = \begin{cases} \min (d_{f,i,a}) & a \in D_{i,A} \quad \text{if} \quad |D_{i,A}| > 0 \\ \infty & \text{if} \quad |D_{i,A}| = 0 \end{cases}
\]

Another quantity, \(rf_{i,a}\), is computed as:
it is a ‘reduced’ distance between \(i \) and a not dominated solution \(a \) of \(A \).

Then considering the solutions of \(A \) not dominated by \(i \), the parameter \(r_{i,a} \) is computed similarly to \(d_{i,a} \):

\[
r_{i,a} = \min_{a \in A \setminus D_i} \left\{ \begin{array}{ll} k \in A \\ r_{i,a} = \frac{1}{\| \sum_{k=1}^{n} \left(\max \{ 0, f_{i,k} - f_{k,a} \} \right)^2 \right\} \end{array} \right.
\]

Finally, defining, for each \(i \in \text{POF} \), the value \(s_{i,A} \) as the minimum between \(d_{i,a} \) and \(r_{i,a} \), the new unary quality indicator, \(DOA \), is computed as:

\[
DOA (A) = \frac{1}{|\text{POF}|} \sum_{i \in \text{POF}} s_{i,A}
\]

The smaller is \(DOA \) the better is the Pareto approximation front.

3 Optimization of a magnetic shield

The DOA quality indicator was used to compare the Pareto approximation fronts given by two different multi-objective optimization algorithms NPAEP [3] and NSGA II [4] applied to mathematical benchmark problems for which the true POF was known. In particular, Table 1 shows the results obtained by NPAEP and NSGA II for the Fonseca and Fleming problem [5] (FON) using only 1000 and 2500 objective function evaluations. The results are the DOA mean values (over one hundred trials): the lower the index is the better the algorithm works.

<table>
<thead>
<tr>
<th>(n_I)</th>
<th>NPAEP</th>
<th>NSGA II</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>0.006427</td>
<td>0.018121</td>
</tr>
<tr>
<td>2500</td>
<td>0.003008</td>
<td>0.006400</td>
</tr>
</tbody>
</table>

NPAEP works better than NSGA II, it is worth pointing out that NSGA II needs 2500 fitness evaluations to reach results comparable to those of NPAEP. For all the mathematical benchmark problems with few design variables and for which the true POF was regular, NPAEP showed the same behaviour. NSGA II outperforms NPAEP when the number of design parameters increases.

Hence NPAEP was chosen for the optimization of the shielding of the axisymmetric induction heating system optimized in [6] in which the different objectives were combined in a single objective function. Two design parameters are used: the semi-height and the outer radius of the steel shield; while the two optimization targets to minimize, i.e. the mean magnetic induction \(B_m \) in the target area and the power losses \(W_s \) in the shield, are kept distinct. Here are reported the results of the passive shield optimization only. Figure 1 shows the POF obtained by NPAEP after 2000 numerical simulations carried out by means of FEM-DBCI [6]. The POF is well-distributed and full filled thus the decision maker has several solutions to choose from.

More details and results will be given in the full contribution.

References

Accurate and efficient FEM simulations of circular spiral planar inductors

S.A. Rizzo¹, N. Salerno¹ and S. Sindoni¹

¹Dipartimento di Ingegneria Elettrica, Elettronica e Informatica - Università di Catania - Catania, Italy
sarizzo@dieei.unict.it, nsalerno@dieei.unict.it and ssindoni@dieei.unict.it

Summary. In this paper an efficient methodology to simulate electromagnetic devices involving circular spiral planar windings is illustrated. The numerical simulations are carried out by means of 2D axisymmetric finite element (FE) analyses to solve electrostatic and magneto quasi-stationary (MQS) field problems taking into account all parasitic effects, in order to obtain accurate results with a reduced computational effort.

1 Introduction

One of the more pressing objective of technology is to improve performances of electrical and electronic devices reducing their dimensions, weight, power consumption and cost. To achieve this goal miniaturization of devices components, increase of signals frequency and easy manufacturing are mandatory.

Integrated planar electromagnetic devices are widely applied and, in particular, spiral planar windings can be used as integrated inductors for RF systems [1], as antennas for wireless transmissions, in RFID applications, as HF transformers [2], for contactless energy transmission systems or as EMI filters [3].

In this paper, the performances of coreless planar spiral windings (CPSW) used as integrated planar EMI filter for limiting conducted emissions are investigated by means of numerical simulations. The simulations where carried out by means of FE analyses following an efficient strategy, described in section 2, that allows to obtain accurate results with a reduced computational effort. A prototype was realized and comparison between simulated and measured results were made as shown in section 3.

2 Finite element strategy

Electromagnetic planar devices are affected by several parasitic effects that influence their operation and performances. The increase of signal frequency produce an increase of the windings resistance due to the skin effect and to the proximity of other conductors; the capacitive effects, that are negligible at low frequency, must be considered and they determines the frequency response of the device and its resonances.

In this work, a coreless EMI filter made by two circular spiral planar inductors drawn on a double face printed circuit board (PCB) is analyzed. To simulate the planar EMI filter, FE analyses were preferred to analytical models: since these models are often too simple and inaccurate especially to determine distributed turn-to-turn capacitances and the resistance in presence of skin and proximity effects. In order to consider all these effects, a full wave 3D FE analysis should be necessary but it requires a huge computational effort particularly if conductors must be discretized by means of a fine mesh.

In this work, authors present a strategy to carry out accurate FE simulations with an acceptable computational cost in terms of memory usage and CPU time.

This strategy consists in the following steps:
1) the real 3D geometry of the filter is approximated with an axisymmetrical one as shown in Fig. 1;
2) an electrostatic FE analysis is carried out by mean of FEM-DBCI [4] in order to calculate the matrix of capacitances [5] among all turns;
3) MQS analyses [6] are then performed in the range 1÷30 MHz and the capacitive contribution is taken into account by means of concentrated capacitors connected between each couple of turns (circuit elements interface with finite elements).

Steps 2 and 3 were performed by means of a script that launched the FE analyses consecutively: first the electrostatic solution and then the MQS analyses in which all the capacitors are automatically inserted between each pair of turns.

3 Simulation results

Figure 2 shows a detail of the FE mesh for electrostatic analysis: in this case conductors are not discretized and a total of about 13,500 second order finite elements were used. In the MQS analyses conductors should be discretized according with penetration dept in order to have accurate results: to avoid the use of an adaptive meshing, the mesh with the right accuracy at 30 MHz was used for all the frequencies (a total of about 75,000 second order finite elements were employed).

All the computations were performed by means of ELFIN, an FE code developed by the authors [7]. The simulations runs on a PC (Pentium IV, 3.2 GHz, 4Gb RAM): they take about one hundred minutes. On the same machine it was impossible to complete a full wave 3D FE analysis of the real device, also using a coarse mesh inside conductors.

A prototype was realized on which several measures were performed.

Figure 3 shows a comparison between simulated and measured transfer gain for the CM filter: numerical results are in good agreement with measures. Similar results were obtained for the DM filter. More details and results will be given in the full contribution.

References

1 Motivation

During the design process of semiconductor structures, simulations of new micro and nano scale systems are essential due to, e.g., the expensive production of prototypes. An important aspect is the ongoing miniaturization of the structures on the one hand and the increase in the working frequencies on the other hand. The high density of electric conductors induces parasitic effects, e.g., crosstalk, which have to be considered already in the design stage. Therefore, the exact knowledge of the semiconductor structures and the surrounding electromagnetic (EM) field is necessary. Another effect, which plays a no longer negligible role, is the variation of the feature structure size caused by inaccuracies of the resolution during the lithography. To consider these variations in the simulation, models with parametric uncertainties are required. A variational analysis of the effect of these uncertainties on the EM field requires methods for uncertainty quantification (UQ) [4, 6]. For this purpose, we will employ non-intrusive approaches as they allow the use of EM field solvers for deterministic problems without accessing the source code. Possible choices are Monte Carlo and stochastic collocation. Here we will employ the latter due to their faster convergence. Still, UQ via stochastic collocation requires numerous full-order EM field solves which can be a time-consuming task for complicated 3D geometries. It is thus our goal to combine this approach with model order reduction methods (MOR) for the Maxwell equations to reduce the computational cost, where the reduced-order model needs to preserve the statistical properties of the full-order model. All these problems are addressed within the research network Model Reduction for Fast Simulation of New Semiconductor Structures for Nanotechnology and Microsystems Technology (MoreSim4Nano), see [5]. Figure 1 shows a coplanar waveguide which serves as a benchmark within MoreSim4Nano and for which we show some numerical results in Section 4.

2 Stochastic Collocation for EM Field Computations

The system of equations describing the EM field are Maxwell’s equations

\[
\begin{align*}
\partial_t (\varepsilon E) &= \nabla \times H - \sigma E - J \\
\partial_t (\mu H) &= -\nabla \times E \\
\nabla \cdot (\varepsilon E) &= \rho \\
\nabla \cdot (\mu H) &= 0,
\end{align*}
\]

with the electric field intensity \(E\), the magnetic field intensity \(H\), the charge density \(\rho\), the impressed current source \(J\), and material parameters \(\varepsilon = \varepsilon_r \cdot \varepsilon_0\) (permittivity), \(\mu = \mu_r \cdot \mu_0\) (permeability), \(\sigma\) (electrical conductivity). For simplification, we work with the time-harmonic form

\[
\nabla \times (\mu^{-1} \nabla \times E) + i \omega \sigma E - \omega^2 \varepsilon E = i \omega J,
\]

on the space \(X = \{ E \in H^0_{\text{curl}} | \nabla \cdot (\varepsilon E) = \rho \}\). Up to now, we consider the material parameters \(\varepsilon_r, \mu_r,\) and \(\sigma\) as uncertain. For the examination of their influence on the statistical behavior of the solution \(E\) we use stochastic collocation [3] with Stroud interpolation points [2].

2.1 Stochastic Collocation

Collocation methods rely on interpolation. The idea is to approximate high-dimensional integrals, e.g., the
expectation value of our solution \(E \), by an (efficient) quadrature rule
\[
\mathbb{E}(E) = \int_I \mathbb{E}(\xi) f(\xi) d\xi \approx \sum_{i=1}^{n} \mathbb{E}(\xi_i) w_i.
\]
Here \(I \) is the image of the probability space under the probability measure, \(f \) is the unknown probability density function of \(E \), \(\xi_i \) are the \(n \) interpolation points and \(w_i \) are the associated weights.

2.2 Stroud Integration

The interpolation formula used in our algorithm was introduced in 1957 by A. H. Stroud [7] and yields either beta or normal distributed interpolation points which are weighted by \(1/n \), where \(n \) is the number of interpolation points as in Sec. 2.1. Though we need \(\varepsilon, \mu > 0 \) and \(\sigma \geq 0 \), we suppose them to be log-normally distributed and use the exponential of the normal-distributed Stroud points as interpolation points.

3 Model Order Reduction

The discretization of (1) leads to the following system
\[
\mu_r A_{\mu_0} \varepsilon + \varepsilon_r A_{\varepsilon_0} \dot{\varepsilon} + \sigma A \dot{\varepsilon} = Bu, \\
y = Ce,
\]
where \(\varepsilon \) is the discretized electric field, \(A_{\mu_0}, A_{\varepsilon_0} \) and \(A \) are the parameter independent system matrices in \(\mathbb{R}^{N \times N} \), \(u, y \) define the inputs/outputs, and \(B, C \) specify the input/output behavior. Here \(N \) is the number of grid points in \(G \) and large. This system is then reduced, e.g., by means of rational interpolation methods as in [3] and we achieve a reduced system of the form
\[
\mu_r \hat{A}_{\mu_0} \hat{\varepsilon} + \varepsilon_r \hat{A}_{\varepsilon_0} \ddot{\varepsilon} + \sigma \hat{A} \dot{\varepsilon} = \hat{B} u, \\
\hat{y} = \hat{C} \varepsilon,
\]
where \(\hat{A}_{\mu_0}, \hat{A}_{\varepsilon_0}, \hat{A} \in \mathbb{R}^{r \times r} \) with \(r \ll N \) and \(\| y - \hat{y} \| \) small.

4 Numerical Results Concerning the Stochastic Collocation Approach

As a benchmark we consider a coplanar waveguide with dielectric overlay, see Figure 1. The model consists of three perfectly conducting striplines situated at a height of 10\(\text{mm} \) in a shielded box with perfect electric conductor (PEC) boundary. The system is excited at one of the discrete ports and the output is taken at the other one. Below a height of 15\(\text{mm} \) there is a substrate with \(\varepsilon_r^1 \approx 4.4 \) and \(\sigma^1 \approx 0.02 \text{S/m} \), above there is air with \(\varepsilon_r^2 \approx 1.07 \) and \(\sigma^2 \approx 0.015 \text{S/m} \), while \(\mu_r \approx 1 \) within the whole box. The variance of each parameter is approximately 1% of the expected value.

The system is treated as a system with 5 uncertain parameters, which leads to the affine discretized form
\[
\mu_r A_{\mu_0} \varepsilon + (\varepsilon_r A_{\varepsilon_0}^1 + \varepsilon_r^2 A_{\varepsilon_0}^2) \dot{\varepsilon} + (\sigma A^1 + \sigma^2 A^2) \varepsilon = Bu, \\
y = Ce.
\]
The discretization is done in FEniCS by use of Nédélec finite elements and the Stroud-based collocation is implemented in MATLAB®. Since the used discretization has only 18755 degrees of freedom, there is no model order reduction used up to now.

The Stroud-based collocation uses only 10 supporting points and the computation requires less than a minute. To verify the accuracy, the results are compared with a Monte Carlo simulation which operates on 10000 interpolation points. This takes several hours. Using the frequency \(\omega = 0.6 \cdot 10^9 \) we achieve the following relative errors for the expected value of \(e \) and \(y \)
\[
\text{err}_{\text{ref}, E(e)} = 0.0038\% \quad \text{and} \quad \text{err}_{\text{ref}, E(y)} = 0.0042\%.
\]

Considering the fact that we use only 10 Stroud points the results are satisfactory. To achieve more accuracy one could use, e.g., a lot more sparse grid points, which would be much more expensive. For this reason and for systems of higher dimension we need MOR.

Acknowledgement. The work reported in this paper was supported by the German Federal Ministry of Education and Research (BMBF), grant no. 03MS613A. Responsibility for the contents of this publication rests with the authors.

References

5. http://www.moresim4nano.org
An Embarrassingly Parallel Algorithm for Finite Element Formulations

Eike Scholz, Sebastian Schöps, and Markus Clemens

Chair of Electromagnetic Theory, Bergische Universität Wuppertal
{scholz,sschoeps,clemens}@uni-wuppertal.de

Summary. In this paper we derive a new stepwise embarrassingly parallel, globally convergent algorithm for linear and non-linear electrostatic problems. It is based on a new interpretation of the classical finite element formulation. We show problems with cellwise linear materials and prove convergence of the proposed method.

1 Overview

Nodal search finite element methods have been derived in [1] using a non-Galerkin approach. It allows a natural decoupling of finite elements similarly to discontinuous Galerkin approaches [2]. This paper will lay out this algorithm using a variation of the usual variational Galerkin method based finite element approach (see e.g. [3]) for equation

\[\text{div}(\varepsilon \text{grad}(\phi)) = \rho \]

(1)

Using the Galerkin finite element approach (see e.g. [3]) has the advantage that it is easier to apply, broadly known, and seems to yield better conditioned systems, although it is less general then the initial approach in [1].

1.1 A Special Finite Element Representation

The proposed algorithm is based on a Lagrange finite element formulation, in which the resulting problem, after using the Galerkin approach, has the form

\[P^T A P \alpha = - P^T A \lambda_0 \, . \]

(2)

where A is a block diagonal matrix, whose sub-matrices describe the local finite element stiffness matrices for associated single mesh cells, \(\lambda_0 \) is a vector containing boundary data, \(\alpha \) is the vector of global degrees of freedom (dof), and P is a very sparse incidence matrix mapping global to local degrees of freedom. The mathematical details of this are discussed in the full paper. Since A is positive definite and symmetric, solving equation [2] is equivalent to solving

\[(\lambda_0 + P \alpha)^T A (\lambda_0 + P \alpha) \leq \min \, . \]

(3)

Equation [3] is solved directly, using a direct search optimization algorithm, that changes only one global degree of freedom in each step. The used algorithm is a simple generating set search method as discussed in [4]. Further in the nonlinear case A depends on \(\alpha \) which requires some additional care. This approach results in an algorithm with global convergence, even in many non-linear cases. The mathematical details and constraints are discussed in the full paper.

2 Nodal Search

The nodal search algorithms exploits the fact, that a change in a global degree of freedom only affects a very local area of an approximation function build from finite elements. The basic idea is to find first, for every degree of freedom, the area where a change in the degree of freedom actually has an effect on the associated approximation function. This is done by finding the affected cells, as shown in Fig. [1] of every global degree of freedom.

Next, the algorithm determines a decomposition of all global degrees of freedom into a set of sets of independent degrees of freedom. Where independent means that the degrees of freedom have no affected cells in common, as shown in Fig. [1]. A rigorous mathematical analysis of this decomposition approach is provided in the full paper. Last, an iteration over nodal search steps is done which terminates when the step-length becomes lower then a given threshold.

A nodal search step tries to improve the value of one node’s dof. This leads to a formulation that is similar to a multiplicative Schwarz method and in
fact is, for first order finite elements, a multiplicative
Schwarz method, which is shown in the full paper.
Further in the first order case it is similar to the al-
go-rithm in [3] as well. The computation of a nodal
search step obviously depends only on a few degrees
of freedom. A nodal search step on node l improves
an existing approximation described by α to a new
better approximation α^{new} via $\alpha^{new} = \alpha + \theta \varepsilon$, where
the nodal search step length θ can, for cellwise linear
isotropic materials, be computed by

$$\theta_l = -\frac{\xi_l + v_l^T \alpha}{\chi_l}$$

(4)

where ξ_l, χ_l are real numbers and v_l is a sparse vector
for all l. All values i.e. ξ_l, χ_l and v_l^T can be computed
in parallel using λ_0, P and A.

Further, the computation of all θ_l in a set of inde-
pendent degrees of freedom is embarrassingly parallel,
which is proven in the full paper. Thus, iterating
through all sets of a decomposition into sets of inde-
pendent degrees of freedom, yields a stepwise embar-
rassingly parallel algorithm.

3 Test Implementation and Results

The algorithm has been implemented with OpenMP
parallelization. This test implementation uses second
order tetrahedral elements, and an ad-hoc iterative
mark and sweep algorithm to create the required de-
composition of degrees of freedom into sets of inde-
pendent degrees of freedom. The algorithm has been
tested using the real world problem shown in Fig. 2.
The details of the model are described in [6].

Fig. 2. A real world insulator model for testing, meshed us-
ing second order tetrahedrons with about 4.8 million nodes.

These results show, that the algorithm does not
only work in theory, but in practice as well. The re-
results show that the convergence is slow but secure
even without preconditioning on ill conditioned sys-
tems. Its speed, of course, depends on the size of
the problem and the amount of parallel processors. Thus
a variant of this algorithm, e.g. extended by a multi-
grid scheme, might become a good default algorithm,
on GPGPU systems, similarly to the approach in [7].

4 Outlook

We have presented a new massively parallel algorithm
for solving electrostatic problems. The full paper pro-
vides a rigorous mathematical treatment of the algo-
rithm derivation and convergence with a lot more ref-
ences. Further, the above and additions numerical
results are discussed in detail, regarding convergence,
speed and stability.

References

1. Eike Scholz, Principles of Optimal Residual Formu-
lations and Optimal Residual Finite Element Methods
for Solving Partial Differential Equations. Mathematics
2. Tim Warburton, Jan S. Hesthaven Nodal Discontinu-
ous Galerkin Methods Texts in Applied Mathematics
54, Springer Science+Buisines Media 2008
3. Alexandre Ern, Jean-Luc Guermond Theory and Prac-
tice of Finite Elements Applied Mathematical Sciences
159, Springer-Verlag New York 2004
4. Tamara G. Kolda, Robert M. Lewis, Virginia Torczon
Optimization By Direct Search: New Perspectives on
Some Classical and Modern Methods In Siam Review,
Vol. 45, No. 3, pp. 385-482, Society for Industrial and
Applied Mathematics
5. Joao Pedro A. Bastos, Nelson Sadowski A New Method
to Solve 3-D Magnetodynamic Problems Without As-
sembling an Ax = b System IEEE Transactions on Mag-
netics, Vol. 46, No. 8, August 2010
6. D. Stefanini, M. Clemens, J.M. Seifert Three Dimen-
sional FEM Electric Field Calculations for EHV Com-
posite Insulator Strings International Power Modula-
tors and High Voltage Conference (IPMHV 2010), 23.-
27.05.2010, Atlanta, USA, pp. 238-242
7. David M. Fernandes, Maryam Mehri Dehnavi, Warren J.
Gross, Dennis Giannacopoulos Alternate Parallel Pro-
cessing Approach for FEM IEEE Transactions on Mag-
netics, Vol. 48, No 2 February 2012
The Reconstruction of Shape with 3-Step Modeling Strategy

Murat Simsek

Electronics and Communication Department, Istanbul Technical University, Turkey simsekmu@itu.edu.tr

Summary. Three step modeling strategy is newly developed to improve the performance of Artificial Neural Network through Knowledge Based Techniques. This strategy provides not only more accurate results but also time efficiency especially in complex modeling problems. In this study the reconstruction of shape obtained from measurements of scattered electromagnetic fields is considered. Multi Layer Perceptron is chosen for realization of Artificial Neural Networks. In order to demonstrate the efficiency of three step modeling, the reconstruction of shape for two different geometries are considered.

1 Introduction

Artificial Neural Network (ANN) is a well known approach in modeling problems where only input-output data is available. Data generation, number of neurons and number of iterations are important features that effect the accuracy of ANN. Since for complex modeling problems it is difficult to have input-output necessary data, modeling is hardly applicable for such problems.

Knowledge Based Techniques were developed to reduce complexity of modeling problem by using the knowledge about the considered problem [2,4]. Three step modeling strategy further improves the efficiency of knowledge based techniques. This strategy uses same training data and same number of neurons, but generates more accurate results and less time consuming than the conventional ANN modeling.

In this work, the main contribution over [1] is to use MLP as ANN structure. MLP, Prior Knowledge Input (PKI) [4] and Prior Knowledge Input with Difference (PKI-D) [2] are used in first (M-1), second (M-2) and third (M-3) steps of 3-step modeling strategy [1], respectively. In order to show the efficiency of the method inverse scattering problem is considered.

2 3-Step Modeling Strategy

3-step modeling strategy provides gradual improvements during modeling. For this purpose, it firstly utilizes ANN structure. After training process is completed, this model is named model-1 (M-1). M-1 generates prior knowledge for PKI model. PKI utilizes response of M-1 and complexity of modeling problem is reduced via this prior knowledge. After training process is completed, this model named model-2 (M-2). Finally PKI-D utilizes M-2 response both at input and output. Therefore M-2 is used to reduce complexity and it narrows the output range using difference between original response and M-2 response.

Each step uses same number of iterations and total number of iterations and neurons are the same as in conventional ANN model. This strategy gradually improves accuracy during three steps and total time consumption is always less than using conventional ANN model.

Modeling steps and necessary formulations of 3-step modeling strategy are given as follows:

- **Step-1:**
 Training ANN and calculate training response
 \[x_{M-1} = f_{ANN} (Y_f) \]

- **Step-2:**
 Training ANN using extra knowledge \(Y_{M-1} \) and calculate training response
 \[x_{M-2} = x_{PKI} = f_{ANN} (Y_f,x_{M-1}) \]

- **Step-3:**
 Training ANN using extra knowledge \(Y_{M-2} \)
 \[x_{M-3} = x_{PKI-D} = f_{ANN} (Y_f,x_{M-2}) + x_{M-2} \]

- **Test error:**
 Calculate test data using \(M-1,M-2 \) and \(M-3 \) and find test error for 3-step modeling

\[
\text{Mean Error} = \frac{1}{N} \times \sum_{i=1}^{N} \left| \frac{x_{\text{original},i} - x_{\text{method},i}}{x_{\text{original},i}} \right| \\
\text{Max Error} = \max \left\{ \left| \frac{x_{\text{original},i} - x_{\text{method},i}}{x_{\text{original},i}} \right| \right\}
\]

After training process is completed for 3-step modeling as shown in Fig.1, each model is used to calculate test error. This error performance is useful to compare this strategy with conventional modeling technique.

3 Inverse Scattering Problem

The direct scattering problems investigate the scattering fields for a given object. On the other hand, the aim of inverse scattering problems is to find out the properties of an object, such as shape, electromagnetic parameters, position for given scattered fields. Five Fourier coefficients (one of them is real others are complex) are used as inputs and 10 complex values obtained by measurement points in Fig.2 are used as outputs of the original model [3]. In this
Fig. 1. 3-step modeling of inverse scattering problem.

Fig. 2. Geometry of scattering problem.

Fig. 3. The comparing original shape with the shape reconstruction of 3-step model and MLP-ANN model for geometry-1.

Fig. 4. The comparing original shape with the shape reconstruction of 3-step model and MLP-ANN model for geometry-2.

4 Conclusion

Although 3-step model utilizes same number of iterations and number of neurons as conventional ANN, it generates more accurate results (mean error: %3.7) in less time than conventional structure (mean error: %4.2). This efficiency is based on knowledge based strategy in 3-step modeling. This work demonstrates the efficiency of this strategy for inverse scattering problem as well.

References

A High-Order Discontinuous Galerkin-Approach-Based Particle-In-Cell Method for the Simulation of Large Scale Plasma Devices

A. Stock1, J. Neudorfer1, M. Pfeiffer2, R. Schneider3, S. Fasoulas2, and C.-D. Munz1

1 Institut für Aerodynamik und Gasdynamik, Universität Stuttgart, Germany stock@iag.uni-stuttgart.de, iagneudo@iag.uni-stuttgart.de, munz@iag.uni-stuttgart.de

2 Institut für Raumfahrtsysteme, Universität Stuttgart, Germany mpfeiffer@irs.uni-stuttgart.de, fasoulas@irs.uni-stuttgart.de

3 Institut für Hochleistungsimpuls- und Mikrowellentechnik, Karlsruher Institut für Technologie, Germany rudolf.schneider@kit.edu

Growing computational capabilities and simulation tools based on high-order methods allow for complex shaped plasma devices to simulate the entire nonlinear dynamics of the Vlasov-Maxwell system modelling the particle-field-interactions of a non-neutral plasma without significant simplifications\cite{4}. Thereby, new insights into physics on a level of detail that has never been available before provides new design implications and a better understanding of the overall physics.

In the field of gyrotron design state-of-the-art fast codes play a crucial role\cite{2,6}. While procuring their rapidity by making strong physical simplifications and approximations, the correctness of these assumptions is not known to be valid for all considered variations of the geometry and operation setup. Solving the nonlinear Vlasov-Maxwell system without significant physical reductions, the self-consistent transient 3D electromagnetic Particle-In-Cell (PIC) method\cite{1,3} can provide better insights into these setups and beyond that can serve as validation tool for a fast design code.

We present a high-order discontinuous Galerkin method based PIC code with high-order coupling techniques on unstructured grids in a parallelization framework allowing for large scale applications on high performance computing clusters\cite{7,10}. We simulate the geometrically complex gyrotron resonant cavity and the quasi-optical mode converter of the 170 GHz gyrotron aimed for plasma resonance heating of the fusion reactor ITER\cite{5,9}. A result of our high-order transient resonator simulations is shown in Figure 1.

Currently we enhance the range of applications of our PIC-code to rarefied plasma flows in which particles interaction has to be taken into account, i.e. collisional phenomena of the Boltzmann integral. According to the nature of these interactions, the Boltzmann collision integral has to be approximated with different appropriate approaches which require their own numerical model and method. The Direct Simulation Monte Carlo (DSMC) method which has been adopted and coded is the state-of-the-art approach for the numerical modeling of short-range elastic electron neutral collisions and binary inelastic reactions like excitation, ionization, dissociation, recombination, etc.

The coupling of the DSMC module with the DG-PIC solver has been carried out and the coupled code is applied to a variety of discharge problems for validation purposes. Besides collective phenomena from computations in gyrotrons, we will here further present and discuss results from plasma streamer simulations (see Fig. 2). Especially, we will focus our attention to the avalanche-streamer transition, the streamer formation and the subsequent streamer evolution which are key mechanisms in the early stage of the discharge phenomenology.

So far, scientific demonstration calculations for gyrotron devices and streamers have been performed\cite{7,10}. We expect that the growing potential of the code will enable us to simulate a broad range of applications also on industrial scale. Besides streamers and micro and millimeter wave sources, also applications with electromagnetic vulnerability background, such as the impact of space weather on satellites, and
new space propulsion concepts such as the \textit{Mini Magnetospheric Plasma Propulsion} can be considered \cite{8}.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{streamer_simulation}
\caption{Field and particle distribution from the streamer simulation on 500 MPI processes with the DG-PIC solver coupled with the DSMC module.}
\end{figure}

\textbf{Acknowledgement.} Work supported by the Deutsche Forschungsgemeinschaft (DFG) grant “Numerical Modeling and Simulation of Highly Rarefied Plasma Flows”.

\section*{References}

Realization Of Sprott Case C Attractor With CCIIs

Yılmaz Uyaroglu1, İhsan Pehlivan2

1Sakarya University, Eng. Faculty, Electrical Electronics Engineering Department, 54187, Esentepe Campus, Sakarya, Turkey, uyaroglu@sakarya.edu.tr
2Electronics and Computer Education Department, Sakarya University, 54187, Esentepe Campus, Sakarya, Turkey, ipehlivan@sakarya.edu.tr

Summary

The nonlinear autonomous Sprott Case C chaotic equations are algebraically simple but can generate a complex chaotic attractor. In this paper, we propose to realize Sprott Case C Equation known well by using CCIIs. Chaotic electronic implementation of the Sprott Case C attractor was realized using OrCad-PSpice® with CCIIs. We gathered a new design which advocates a wide band of frequencies and prosperously gives the simulation results of Sprott Case C Equation. Chaotic graphics were just the same as other realizations devised before.

1 Introduction

Up to now, various chaotic systems are introduced in[1,7]. Sprott embarked upon an extensive search for autonomous three dimensional chaotic systems with fewer than seven terms in the right hand side of the model equations[8]. Several thousands of chaotic cases were found by using computer programs. Only 33 cases are distinct in the point that their functional forms are different and not related by a trivial transposition of variables. By performing various algebraic transformations on these cases, 15 additional cases were found satisfying for the criterions of simplicity that mentioned above. Of these total 48 (33+15) cases only 19 (Labeled by ‘A’ to ‘S’) appear to be distinct in the sense that there is no obvious transformation from one to another. In these 19 (‘A’ to ‘S’) cases, ‘A’ to ‘E’ (five) have five terms and two nonlinearities while cases ‘F’ to ‘S’ (fourteen) have six terms and one nonlinearity in the right hand side. In this search, no case was found fewer than five terms and any number of quadratic nonlinearity, which shows chaotic behavior. Among these nineteen cases, only Case ‘A’ is conservative (volume preserving) while others are dissipative flows (volume contracting) and shows strange attractors.

This paper focuses on realization of Sprott Case C Attractor with CCIIs. Section II presents the dynamical analyses of Sprott Case C attractor. In Section III, electronic circuit design and PSpice® Simulations of chaotic Sprott Case C system. Finally, conclusions and discussions are given.

2 Dynamical analyses of Sprott Case C attractor

Following Sprott Case C chaotic system was used for realizing the chaotic circuit.

\[
\begin{align*}
\dot{x} &= y \cdot z \\
\dot{y} &= x - y \\
\dot{z} &= 1 - x^2
\end{align*}
\]

Using Matlab-Simulink modeling, xy phase portrait of the Sprott Case C system are achieved in Figure 1.

Fig. 1. x-y phase portrait of Sprott Case C Attractor

3 Electronic circuit design and simulation of the Sprott Case C attractor with CCIIs

Chaotic differential equations of the Sprott Case C chaotic circuit are given below.
\[
\begin{align*}
\dot{x} &= \frac{1}{R_1C_1} yz \\
\dot{y} &= \frac{R_4}{R_2R_4C_2} x - \frac{R_4}{R_3R_4C_2} y \\
\dot{z} &= \frac{R_4V_0}{R_7R_4C_3} - \frac{R_8}{R_6R_4C_3} x^2
\end{align*}
\] (2)

Fig. 2. Circuit Schematic of the Sprott Case C attractor with CCIIs

Fig. 3. Pspice Simulation Result of the Sprott Case C attractor with CCIIs (xy-attractor)

Acknowledgement
This work was supported by the Sakarya University Scientific Research Projects Commission Presidency (No. 2010-01-00-002).

References
Dielectric Breakdown Simulations of an On-Load Tap-Changer in a Transformer Considering the Influence of Tap Leads and Windings

M. Wiesmüller¹,², B. Glaser¹, F. Fuchs¹, and O. Sterz¹

¹ Maschinenfabrik Reinhausen GmbH (MR), Falkensteinstr. 8, 93059 Regensburg, Germany
² University of Applied Sciences Deggendorf, Edlmairstr. 6 and 8, 94469 Deggendorf, Germany

Summary. This paper reports on the simulation of an on-load tap-changer in a power transformer. The electric fields are computed and resulting breakdown voltages are estimated by using the streamer criterion. The environment of the on-load tap changer is taken into account by modeling tap leads in detail as well as transformer windings. The goal of the investigations is to justify standard design and test procedures which assume a low dependency of the interior dielectric properties of the on-load tap-changer on the surrounding.

1 Introduction

On-Load Tap-Changers (OLTCs) are devices which permit the change of the turn ratios of transformers, allowing voltage regulation or phase shifting under load without interruption.

Power transformers equipped with OLTCs have been main components of electrical networks and industrial applications for nearly 80 years [2, 4].

One crucial criterion for the selection of an adequate OLTC for a certain transformer or application is its insulation level. Generally, the dielectric strength depends on the whole system, i.e. the transformer, as well as the connection-leads and the OLTC. However, usual test procedures by OLTC manufacturers are not done within a transformer but on a separate OLTC. Also during design the influence of leads and windings on the internal OLTC insulation is usually neglected. This gives rise to further investigations justifying this approach. Therefore, a typical system is simulated by computing the electric field and breakdown voltages with and without windings and tap-leads.

2 Finite Element Simulation

For simulation half of the core and the tap windings of the transformer phase nearest to the OLTC are modeled. The OLTC itself is represented by its lower part—the tap selector. After several simplifications the CAD-data of the tap selector are directly imported into the simulation software [1]. The leads are created manually. Finally the transformer tank is built as a surrounding box.

3 Dielectric Breakdown Calculation

Breakdown in oil cannot be described by one coherent theory as in gas. To explain the main mechanisms two basic approaches are used: one is an extension of gaseous breakdown, the other one assumes that breakdown is caused by bridges of fibrous impurities.

To calculate the breakdown voltage in inhomogeneous electric fields different methods can be used, see e.g. [3, 5]. The calculation method we use is based

Fig. 1. Magnitude of the electric field of the total arrangement. Red colored parts of the plot are above 1kV/mm.
on the streamer criterion along a critical path C
\[
\int_C \alpha(|E(x)|) dl \geq k,
\] (2)
where α is the effective ionization coefficient, E the electric field and k defines the number of electrons necessary for breakdown. With an exponential equation for α and the introduction of a normalized electric field $e(x) := |E(x)|/U$, (2) can be solved as in [3] for the breakdown voltage
\[
U_b = (1\text{mm})^{1/z} \left(\int_C \left(\frac{e(x)}{E_0} \right)^z dl \right)^{-1/z}
\] (3)
with constants $E_0 = 15\text{kV/mm}$ and $z = 4.2$. These constants are derived from measured breakdown data of uniform fields.

The streamer criterion (2) has to be evaluated along critical paths, which for breakdown in oil gaps are fieldlines starting at electrodes with high electric field stresses. Since the most critical fieldline does not necessarily start at a local field maximum many fieldlines have to be evaluated, some of them are shown in Fig. 2. The most critical path and the associated U_b is determined by finding the minimum over all calculated voltages.

4 Influence of the Tap Leads and Windings

To investigate the influence of the transformer and the leads on the dielectric strength of the OLTC three different systems are simulated, see Fig. 3. Field values along several lines parallel to the tap selector axis are compared. In Fig. 4 field values along two of these lines are shown. One line represents a region with low, the other one a region with high electric stresses.

In regions with low fields there is a significant influence of the transformer and the leads, but in regions with high field stresses, which are critical concerning dielectric strength, the differences are maximum 10%. Regarding the calculated breakdown voltages the deviation is even less than 1%.

5 Conclusion

It has been shown that for the investigated typical example the influence of the transformer and the tap leads on the internal OLTC insulation is small enough to neglect them during design optimization and test-procedures.

Acknowledgement. The authors acknowledge discussions with D. Breitfelder and B. Bakija, Siemens AG, and thank for support of T. Strof, T. Manthe, J. Niesner, and B. Visser, MR GmbH.

References

<table>
<thead>
<tr>
<th>Participant</th>
<th>Affiliation</th>
<th>email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adeyemo, Oluwaseun</td>
<td>Toltim Electrical Engineering, Ormande/South Africa</td>
<td>aytaca@ifh.ee.ethz.ch</td>
</tr>
<tr>
<td>Ali, Giuseppe</td>
<td>Dip. di Matematica, Università della Calabria, Cosenza, Italy</td>
<td>giuseppe.ali@unical.it</td>
</tr>
<tr>
<td>Alparslan, Aytac</td>
<td>IFH, ETH Zurich, Switzerland</td>
<td>aytaca@ifh.ee.ethz.ch</td>
</tr>
<tr>
<td>Altomonte, Daniele</td>
<td>DEA, University of Roma 3, Italy</td>
<td>daltomonte@uniroma3.it</td>
</tr>
<tr>
<td>Antonescu, Oana Simona</td>
<td>Technical University of Cluj Napoca, Romania</td>
<td>oana.antonescu@et.utcluj.ro</td>
</tr>
<tr>
<td>Banagaaya, Nicodemus</td>
<td>Dept. of Math. and Comp. Science, TU Eindhoven, The Netherlands</td>
<td>n.banagaaya@tue.nl</td>
</tr>
<tr>
<td>Bandlow, Bastian</td>
<td>FG Theoretische Elektrotechnik, EN 2, TU Berlin, Germany</td>
<td>bandlow@tet.tu-berlin.de</td>
</tr>
<tr>
<td>Bittner, Kai</td>
<td>University of Applied Sciences Upper Austria, Hagenberg, Austria</td>
<td>K.Bittner@fh-hagenberg.at</td>
</tr>
<tr>
<td>Blaszczyk, Andreas</td>
<td>ABB Switzerland Ltd., Corporate Research, Baden-Dättwil, Switzerland</td>
<td>Andreas.Blaszczyk@ch.abb.com</td>
</tr>
<tr>
<td>Blome, Mark</td>
<td>Zuse Institute Berlin, Germany</td>
<td>blome@zib.de, burger@zib.de</td>
</tr>
<tr>
<td>Bockholt, Marcos</td>
<td>ABB AG, DEDC / CoE Dry Type Converter Transformers, Brilon, Germany</td>
<td>marcos.bockholt@de.abb.com</td>
</tr>
<tr>
<td>Bodendieck, André</td>
<td>Institut Computational Mathematics, TU Braunschweig, Germany</td>
<td>a.bodendieck@tu-bs.de</td>
</tr>
<tr>
<td>Bollhöfer, Matthias</td>
<td>Institut Computational Mathematics, TU Braunschweig, Germany</td>
<td>m.bollhoefer@tu-bs.de</td>
</tr>
<tr>
<td>Boyvat, Mustafa</td>
<td>D-ITET, ETH Zurich, Switzerland</td>
<td>mustafa.boyvat@ifh.ee.ethz.ch</td>
</tr>
<tr>
<td>Brambilla, Angelo</td>
<td>DEI, Politecnico di Milano, Italy</td>
<td>brambilla@elet.polimi.it</td>
</tr>
<tr>
<td>Bugert, Beatrice</td>
<td>Weierstraß Institute, Berlin, Germany</td>
<td>bugert@wias-berlin.de</td>
</tr>
<tr>
<td>Cagnoni, Davide</td>
<td>Politecnico di Milano, Dipartimento di Matematica/Italy</td>
<td>davidecagnoni@alice.it</td>
</tr>
<tr>
<td>Camiola, Vito Dario</td>
<td>University of Catania, Italy</td>
<td>camiola@dmi.unict.it</td>
</tr>
<tr>
<td>Christen, Thomas</td>
<td>ABB Switzerland Ltd., Corporate Research, Baden-Dättwil, Switzerland</td>
<td>thomas.christen@ch.abb.com</td>
</tr>
<tr>
<td>Ciuprina, Gabriela</td>
<td>Electrical Eng. Dept., "Politehnica" University of Bucharest, Romania</td>
<td>gabriela@lmn.pub.ro</td>
</tr>
<tr>
<td>Colominas, Ignasi</td>
<td>Civil Engineering School, Universidade da Coruña, Spain</td>
<td>icolominas@udc.es</td>
</tr>
<tr>
<td>Cottet, Didier</td>
<td>ABB Switzerland Ltd., Corporate Research, Baden-Dättwil, Switzerland</td>
<td>didier.cottet@ch.abb.com</td>
</tr>
<tr>
<td>Cui, Jian</td>
<td>Graduate School of Computational Engineering, TU Darmstadt, Germany</td>
<td>cui@gsc.tu-darmstadt.de</td>
</tr>
<tr>
<td>De Falco, Carlo</td>
<td>MOX-Modeling and Scientific Computing, Politecnico di Milano, Italy</td>
<td>carlo.defalco@polimi.it</td>
</tr>
<tr>
<td>Demir, Alper</td>
<td>Koç University, İstanbul, Turkey</td>
<td>aldemir@ku.edu.tr</td>
</tr>
<tr>
<td>Denk, Georg</td>
<td>Infineon Technologies AG München/Germany</td>
<td>georg.denk@infineon.com</td>
</tr>
<tr>
<td>Di Rienzo, Luca</td>
<td>Politecnico di Milano/Italy</td>
<td>luca.dirienzo@polimi.it</td>
</tr>
<tr>
<td>Emiroglu, Selçuk</td>
<td>Eng. Faculty, Sakarya University, Turkey</td>
<td>selekemiroglu@sakarya.edu.tr</td>
</tr>
<tr>
<td>Emson, Cris</td>
<td>Infofytica Europe/UK</td>
<td>Cris.Emson@infofytica.co.uk</td>
</tr>
<tr>
<td>Feng, Lihong</td>
<td>Dynamics of Complex Technical Systems, MPI, Magdeburg, Germany</td>
<td>feng@mpi-magdeburg.mpg.de</td>
</tr>
<tr>
<td>Flisgen, Thomas</td>
<td>Inst. for General Electrical Engineering, University of Rostock, Germany</td>
<td>thomas.flisgen@uni-rostock.de</td>
</tr>
<tr>
<td>Grognuz, Joel</td>
<td>CADFEM AG, Switzerland</td>
<td>joel.grognuz@cadfem.ch</td>
</tr>
<tr>
<td>Name</td>
<td>Affiliation</td>
<td>Email</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Pehlivan, Ihsan</td>
<td>Electronic and Comp. Education Dept., Sakarya University, Turkey</td>
<td>ipehlivan@sakarya.edu.tr</td>
</tr>
<tr>
<td>Petukhov, Andrey</td>
<td>Faculty of Physics, Moscow State University, Russia</td>
<td>petukhov@physics.msu.ru</td>
</tr>
<tr>
<td>Porro, Matteo</td>
<td>Dip. di Matematica, Politecnico di Milano, Italy</td>
<td>matteo.porro@mail.polimi.it,</td>
</tr>
<tr>
<td>Racasan, Nicoleta-Adina</td>
<td>Technical University of Cluj-Napoca, Romania</td>
<td>Adina.Racasan@ct.utcluj.ro</td>
</tr>
<tr>
<td>Rahkonen, Timo</td>
<td>Dept. of Electrical Engineering, University of Oulu, Finland</td>
<td>timor@ee.oulu.fi</td>
</tr>
<tr>
<td>Rathsfeld, Andreas</td>
<td>Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Germany</td>
<td>Andreas.Rathsfeld@wias-berlin.de</td>
</tr>
<tr>
<td>Rizzo, Santi</td>
<td>Dip. di Ingegneria Elettrica, Università di Catania, Italy</td>
<td>rizzo@dieei.unict.it</td>
</tr>
<tr>
<td>Romano, Vittorio</td>
<td>University of Catania, Italy</td>
<td>romano@dmi.unict.it</td>
</tr>
<tr>
<td>Salerno, Nunzio</td>
<td>Dip. di Ingegneria Elettrica, Università di Catania, Italy</td>
<td>salerno@dieei.unict.it</td>
</tr>
<tr>
<td>Schilders, Wil</td>
<td>TU Eindhoven, The Netherlands</td>
<td>w.h.a.schilders@TUE.nl</td>
</tr>
<tr>
<td>Schmidt, Kersten</td>
<td>DFG Research Center MATHEON, TU Berlin, Germany</td>
<td>kersten.schmidt@math.tu-berlin.de</td>
</tr>
<tr>
<td>Schmithusen, Bernhard</td>
<td>Synopsys Switzerland</td>
<td>schmithu@synopsys.com</td>
</tr>
<tr>
<td>Schneider, André</td>
<td>Dynamics of Complex Technical Systems, MPI, Magdeburg, Germany</td>
<td>andre.schneider@mpi-magdeburg.mpg.de</td>
</tr>
<tr>
<td>Schneider, Judith</td>
<td>Dynamics of Complex Technical Systems, MPI, Magdeburg, Germany</td>
<td>will@mpi-magdeburg.mpg.de</td>
</tr>
<tr>
<td>Schnepp, Sascha</td>
<td>Graduate School of Computational Engineering, TU Darmstadt, Germany</td>
<td>schnepp@gsc.tu-darmstadt.de</td>
</tr>
<tr>
<td>Scholz, Eike</td>
<td>Bergische Universität Wuppertal, Germany</td>
<td>scholz@uni-wuppertal.de</td>
</tr>
<tr>
<td>Schöps, Sebastian</td>
<td>TU Darmstadt, Germany</td>
<td>schoeps@math.uni-wuppertal.de</td>
</tr>
<tr>
<td>Simsek, Murat</td>
<td>Electronics and Communication Dept., Istanbul Technical University, Turkey</td>
<td>simsekmu@itu.edu.tr</td>
</tr>
<tr>
<td>Steinmetz, Thorsten</td>
<td>ABB Switzerland Ltd., Corporate Research, Baden-Dättwil, Switzerland</td>
<td>thorsten.steinmetz@ch.abb.com</td>
</tr>
<tr>
<td>Sterz, Oliver</td>
<td>Maschinenfabrik Reinhausen GmbH (MR), Regensburg, Germany</td>
<td>o.sterz@reinhausen.com</td>
</tr>
<tr>
<td>Stevanovic, Ivica</td>
<td>ABB Switzerland Ltd., Corporate Research, Baden-Dättwil, Switzerland</td>
<td>ivica.stevanovic@ch.abb.com</td>
</tr>
<tr>
<td>Stock, Andreas</td>
<td>Inst. für Aerodynamik und Gasdynamik, Universität Stuttgart, Germany</td>
<td>stock@iag.uni-stuttgart.de</td>
</tr>
<tr>
<td>ter Maten E. Jan W.</td>
<td>Bergische Universität Wuppertal/Germany</td>
<td>E.J.W.ter.Maten@tue.nl</td>
</tr>
<tr>
<td>Uyaroglu, Yilmaz</td>
<td>Electronic and Comp. Education Dept., Sakarya University, Turkey</td>
<td>uyaroglu@sakarya.edu.tr</td>
</tr>
<tr>
<td>van Rienen, Ursula</td>
<td>University Rostock, Germany</td>
<td>ursula.van-renien@uni-rostock.de</td>
</tr>
<tr>
<td>Weiland, Thomas</td>
<td>TU Darmstadt, Germany</td>
<td>Thomas.Weiland@TEMF365.onmicrosoft.com</td>
</tr>
<tr>
<td>Weyer, Utz</td>
<td>Siemens Corporate Technology, Munich, Germany</td>
<td>Utz.Weyer@siemens.com</td>
</tr>
<tr>
<td>Wiesmüller, Maximilian</td>
<td>Maschinenfabrik Reinhausen GmbH (MR), Regensburg, Germany</td>
<td>maximilian.wiesmueller@gmx.de</td>
</tr>
<tr>
<td>Zaglmayr, Sabine</td>
<td>CST AG, Darmstadt, Germany</td>
<td>sabine.zaglmayr@ cst.com</td>
</tr>
<tr>
<td>Zschiedrich, Lin</td>
<td>JCMwave GmbH, Berlin, Germany</td>
<td>lin.zschiedrich@jcmwave.com</td>
</tr>
</tbody>
</table>
SCEE2012 Local Organizers

Dr. Andreas Blaszczyk
ABB Corporate Research
Switzerland

Prof. Ralf Hiptmair
Seminar for Applied Mathematics
Raemistrasse 101
CH-8092 Zurich
Switzerland

Dr. Pascal Leuchtmann
Electromagnetic Fields and Microwave Electronics Laboratory
Gloriastrasse 35
CH-8092 Zurich
Switzerland

Dr. Jörg Ostrowski
ABB Switzerland Ltd.
Corporate Research
Baden-Dättwil
Switzerland

Local staff

Dominique Ballarin (ETH)
Christina Buchmann (ETH)
Marianne Pfister (ETH)
Eva Sigrist (ETH)
Irene Stepanek (ETH)
Rosmarie Weber (ABB Baden-Dättwil)
SCEE2012 Programme Committee

Prof. Gabriela Ciuprina
Politehnica University of Bucharest
Romania

Dr. Georg Denk
Infineon
Germany

Prof. Michael Günther
University of Wuppertal
Germany

Dr. Jan ter Maten
University of Wuppertal
The Netherlands

Ir. Bastiaan Michielsen
ONERA
France

Prof. Ursula van Rienen
University of Rostock
Germany

Prof. Vittorio Romano
University of Catania
Italy

Prof. Wil Schilders
TU Eindhoven
The Netherlands

Prof. Thomas Weiland
TU Darmstadt & CST
Germany